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a b s t r a c t 

Dimensionality reduction techniques offer a unique perspective on brain state dynamics, in which systems-level activity can be tracked through the engagement of 

a small number of component trajectories. Used in combination with neuroimaging data collected during the performance of cognitive tasks, these approaches can 

expose the otherwise latent dimensions upon which the brain reconfigures in order to facilitate cognitive performance. Here, we utilized Principal Component Analysis 

to transform parcellated BOLD timeseries from an fMRI dataset in which 70 human subjects performed an instruction based visuomotor learning task into orthogonal 

low-dimensional components. We then used Linear Discriminant Analysis to maximise the mean differences between the low-dimensional signatures of fast-and-slow 

reaction times and early-and-late learners, while also conserving variance present within these groups. The resultant basis set allowed us to describe meaningful 

differences between these groups and, importantly, to detail the patterns of brain activity which underpin these differences. Our results demonstrate non-linear 

interactions between three key brain activation maps with convergent trajectories observed at higher task repetitions consistent with optimization. Furthermore, we 

show subjects with the greatest reaction time improvements have delayed recruitment of left dorsal and lateral prefrontal cortex, as well as deactivation in parts of 

the occipital lobe and motor cortex, and that the slowest performers have weaker recruitment of somatosensory association cortex and left ventral visual stream, 

as well as weaker deactivation in the dorsal lateral prefrontal cortex. Overall our results highlight the utility of a kinematic description of brain states, whereby 

reformatting data into low-dimensional trajectories sensitive to the subtleties of a task can capture non-linear trends in a tractable manner and permit hypothesis 

generation at the level of brain states. 
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. Introduction 

An organism’s behaviour can be viewed as a low-dimensional dis-

illation of its underlying brain activity, since even at higher lev-

ls of abstraction, other behaviours are always possible whenever

ne is manifest. These behaviours result from interdependencies be-

ween neurons, where neural activity is correlated across multiple

patial and temporal scales – much less than the dimensional upper

ound of a purely uncorrelated brain ( Shine, 2020 ). Indeed, recent

rogress in neuroscience has exploited the existence of low-dimensional

rain activity ( Cunningham and Yu, 2014a ), and connectivity ( Avena-

oenigsberger et al., 2018 ; Bullmore and Sporns, 2012 ), resolving per-

istent large-scale patterns indicative of underlying principles of organ-

sation ( Margulies et al., 2016 ). 

In the context of learning, the brain is observed to transition be-

ween two partially overlapping phases: the so called e xploration phase,

n which brain states are more varied as an organism samples the un-

nown parameters of a task; and the exploitation phase, whereby the set

f task parameters are known and a period of brain state refinement and

ptimisation occurs ( Cohen et al., 2007 ). Despite many studies demon-

trating the heuristic value of this exploration-exploitation model, quanti-

ative methods sensitive to the subtleties of brain configurations specif-

cally during phases of task exploitation that are still able to capture the
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ssociated convergence of brain states ( Sadtler et al., 2014 ) have not

een well explored. 

There have been a number of studies that have investigated aspects

ontributing to the exploration-exploitation paradigm at a systems level.

or instance, it has been shown that (over-)learning in a simple motor

ask during an extended training period can induce a shift in modular

rchitecture that functionally partitions the somatomotor and visual sys-

ems ( Bassett et al., 2015 ), with task performance improvements involv-

ng the liberation of cognitive control hubs – specifically frontal and cin-

ulate cortices ( Bassett et al., 2015 ). More generally, the flexible recruit-

ent of fronto-parietal hubs demonstrate their central role in adaptive

mplementation of task demands ( Cole et al., 2013 ). Further studies have

emonstrated short-term automatization in instruction-based visuomo-

or learning tasks is associated with rapidly changing brain dynamics

n multiple levels, including decreased activation of the fronto-parietal

etwork, increased cortico-striatal integration ( Ruge et al., 2019 ), and a

econfiguration of large-scale cortical networks between integrated and

egregated processes ( Mohr et al., 2016 , 2018 ; Sheffield et al., 2021 ). It

emains to be determined precisely how these brain state features dy-

amically evolve within the context of a task, and what their dynamics

an tell us about task performance. 

Dimensionality reduction techniques offer a unique perspective on

rain state dynamics, and expose an axis for constructing a reduced
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Fig. 1. Linear Discriminant Analysis. (a) Extracting parcellation timeseries. b) Comparison of Linear Discriminant Analysis and Principal Component Analysis. In 

Linear Discriminant Analysis, data are first divided into desired classes, and then LDA produces eigenvectors, weighting the input dimensions, which maximize the 

distance between the class mean while conserving variance within each class. Principal Component Analysis produces eigenvectors, weighting the input dimensions, 

which maximally capture covariance in the data. c) The 4 class divisions used in the LDA applied to the present dataset. 
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r  
ystem from high-dimensional multivariate brain datasets that is often

ore amenable to subsequent analyses ( Cunningham and Yu, 2014a ).

n addition, these reduction techniques can reveal persistent structures

in space, time, or both), and thus devalue independent features unique

o a subsystem, such as local noise. More broadly, low-dimensional de-

criptions of neural activity have elucidated unique brain states across

ognitive tasks ( Shine et al., 2019a ) that can also provide a useful ba-

is for capturing changes in brain states within a task. In particular,

hese low dimensional descriptions can disassociate performance errors

n a novel cognitive task as a deviation from a task-specific manifold

 Shine et al., 2019b ). 

In this study, we leveraged dimensionality reduction techniques

o quantify the convergent trajectories of brain states during the ex-

loitation phase of a simple instruction-based visuomotor learning task.

pecifically, we utilize Principal Component Analysis (PCA) to trans-

orm BOLD (blood oxygen level dependant) data into orthogonal com-

onents that maximised the major axes of variance across the dataset

 Fig. 1 a). We then used Linear Discriminant Analysis (LDA; Fig. 1 b) to

dentify linear combinations of the low-dimensional components that

aximised the mean differences between fast-and-slow performance

nd early-and-late learners ( Fig. 1 c), while conserving variance present

ithin these groups. Our results were qualitatively similar for moder-

te changes to these boundaries. The new bases that result from LDA

rovided a means to maximally describe the differences between these

roups and, importantly, contrast patterns of brain activity which un-

erpin these differences. Overall, our analysis highlights the utility of

 kinematic description of brain states, whereby reformatting data into

ow-dimensional trajectories sensitive to the subtleties of a task can cap-

ure non-linear trends in a tractable manner and permit hypothesis gen-

ration at the level of brain states. 

. Materials and methods 

.1. Learning task 

In the instruction-based learning task, subjects were asked to practice

timulus-response associations between four symbols and two responses

left/right-hand index finger button presses ( Mohr et al., 2016 ). Be-

ore practice, S–R associations were explicitly instructed. To this end,

n instruction screen was presented for 10 s showing four symbols si-

ultaneously, two on the right side and two on the left side, with side

ndicating the required response. The instruction screen was followed by

 sequence of single trials (practice phase). In each trial, one of the four

ymbols was presented and subjects had to respond as instructed (i.e.,

ith a left or right button press). Symbols were presented in randomized

rder. Feedback was given after a response or after maximally 1.5 s. In

ase of a correct response, the symbol was highlighted in a colour for

.5 s, whereas after an erroneous response (or after 1.5 s elapsed without

esponse), the symbol was highlighted in grey. In case of an erroneous
2 
esponse (or miss), the trial was repeated, and both trials were excluded

rom analysis. Trials were jittered with randomized 0.8 or 3.5 s inter-

rial intervals. From each symbol, eight correctly performed trials were

ollected, that is, 32 trials per stimulus set. The whole procedure (that

s, instruction screen and practice phase) was repeated 20 times, each

ime using a novel set of symbols. Note that the data from this task were

reviously reported in Mohr et al., 2016 . 

.2. fMRI scanning 

Functional and structural images were acquired on the same Siemens

 T Trio Scanner equipped with a 16-channel circularly polarized head

oil. A gradient echo planar sequence with repetition time (TR) = 2 s,

cho time (TE) = 30 ms and flip = 80° was used for functional imaging.

olumes consisted of 26 slices with an in-plane resolution of 4 × 4 mm

nd a thickness of 5 mm. Presentation 12.0 (Neurobehavioral Systems)

oftware was used to run the experiment. Structural images were also

btained but were only used for neuroradiological assessment in the

urrent study ( Mohr et al., 2016 ). Each subjects fMRI scan was recorded

n a single ∼30 min session. 

.3. Pre-processing 

Pre-processing of functional data was performed with SPM8 running

n Matlab 7.12. Pre-processing consisted of slice-time correction, rigid

ody movement correction (three translation and three rotation param-

ters), normalization of the mean functional image to the SPM MNI EPI

emplate (resampling to 3 × 3 × 3 mm resolution) and smoothing with

 Gaussian kernel, full width at half maximum = 8 mm. 

.4. Brain parcellation 

Following pre-processing, the mean time series was extracted from

75 pre-defined regions of interest (ROIs) as defined in ( Shine et al.,

016 ). To ensure whole-brain coverage, these ROIs included 333 corti-

al parcels (161 and 162 regions from the left and right hemispheres,

espectively) from the Gordon atlas ( Gordon et al., 2016 ),14 subcor-

ical regions from Harvard-Oxford subcortical atlas (bilateral thala-

us, caudate, putamen, ventral striatum, globus pallidus, amygdala,

nd hippocampus), and 28 cerebellar regions from the SUIT atlas

 Diedrichsen et al., 2009 ). A total of 354 ROIs were used with 21 re-

ions excluded from all analysis due to misalignment with some sub-

ect’s brain masks. These have the following indices in the parcel scheme

entioned above: [115, 123, 124, 125, 134, 278, 280, 285, 286, 287,

88, 303, 356, 358, 360, 363, 364, 367, 368, 369, 375]. 

.5. Design-matrix modelling 

We extracted each trial response by modelling the haemodynamic

esponse function (HRF) at each trial onset and averaging the follow-
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g  

f  
ng 3rd and 4th timepoints of the BOLD signal corresponding to a peak

n the HRF (TR of 2 s). We noted that due to the temporal resolution

f the scanner and temporal proximity of trials, the BOLD response of

ome trials may overlap. A sophisticated model pipeline could be used

o disambiguated effects unique to each trial, however, they may also

ntroduce spurious regression artefacts. For the present analysis we ac-

ept this limitation of the data and note its role in potentially weakening

nter-trial differences during analysis. 

.6. Principal component analysis 

The complete pre-processed and parcellated data from all 70 subjects

ere concatenated into a single regional timeseries and spatial PCA was

erformed on the resultant matrix using MATLAB’s pca function. The

op 35 components (selection criteria for this number is detailed below)

xplained ∼84% of the variance in the data. 

.7. Criteria for separating data into classes 

In the following section, we perform a Linear Discriminant Anal-

sis that requires specification of unique classes of interest within a

ataset. To this end, the complete dataset used in this study consisted

f 70 subjects recorded across 20 learning blocks, each comprising 8

epetitions of four stimuli . This results in ∼60 trials (80 minus in-

orrect trials) for each repetition (8) per subject (70). The data were

hen split into four groups independent of subject: Early-fast (repeti-

ions 1–4, reaction time < 20th percentile); Early-slow (repetitions 1–

, reaction time > 80th percentile); Late-fast (repetitions 5–8, reaction

ime < 20th percentile); and Late-slow (repetitions 4–8, reaction time

 80th percentile). There were ∼3500 data points in each group. The

robability distribution of each subjects trials across the four groups

as 24 . 8 ± 0 . 01 , 23 . 9 ± 0 . 01 , 26 . 2 ± 0 . 02 and 25 . 2 ± 0 . 02 with 𝜒2 = 17 . 9
 𝑝 = 1 ). The repetition divisions were chosen so as to maximise the

mount of data retained and ensure early and late repetitions did not

verlap, and the reaction time divisions were chosen so as to high-

ight atypical performance, i.e., sufficient distance above and below the

ean. Supp. Fig. 2 shows the results that follow are consistent with sig-

ificant changes to these data divisions. 

Splitting the data in half and performing all analysis on both sets

roduced qualitatively similar results. 

.8. Linear discriminant analysis 

We utilized Linear Discriminant Analysis (LDA)( Fisher, 1936 ) to sep-

rate the task data into 4 distinct classes: early-fast, early-slow, late-fast,

nd late slow. This method provides a linear transformation into an or-

hogonal basis (independent eigenvectors) such that the difference be-

ween the mean of each class is maximised. In order to protect against

verfitting to artefacts or noise, we performed LDA on the PC coefficient

imeseries by projecting the data onto the top 35 principal components.

ince the higher order PCs contain weaker contributions to overall co-

ariance, they are most susceptible to spatially localized noise and are

ore unique to a given dataset. Thus, we include the minimum amount

f the variance modes that give the most robust eigenmaps following

DA. The criteria for selecting the top 35 PCs used in the final LDA al-

orithm (as detailed Supp. Fig. 1a) consisted of a balance between an

lbow in cumulative explained variance, minimising PC dimensional-

ty, and the stability in the resulting LDA eigenvectors. This PCA-LDA

ipeline has been shown more successful in classifying fMRI response to

aturalistic movie stimuli ( Mandelkow et al., 2016 ) when compared to

olely using LDA without PCA. The LDA algorithm is defined as follows.

In order to separate the PC coefficient data 𝑥 𝜖 𝑋 into 4 classes, we

pecify each class as a matrix 𝜔 𝑖 with rows corresponding to 𝑁 𝑖 obser-

ations and columns to the included number of variables to separate –

.e., 35 PC coefficients. The within-class scatter matrix is first defined as
3 
he sum of each classes covariance matrix 

 𝑊 

= 

4 ∑
𝑖 =1 

𝑆 𝑖 (1) 

here 

 𝑖 = 

∑
𝑥 𝜖 𝑤 𝑖 

(
𝑥 − 𝜇𝑖 

)(
𝑥 − 𝜇𝑖 

)𝑇 
(2) 

re the covariance matrices and 

𝑖 = 

1 
𝑁 𝑖 

∑
𝑥𝜖𝜔 𝑖 

𝑥 (3)

re the class means. The between-class scatter matrix is then defined as

he sum of the covariance matrix of each classes mean to the global

ean 

 𝐵 = 

4 ∑
𝑖 =1 

𝑁 𝑖 

(
𝜇𝑖 − 𝜇

)(
𝜇𝑖 − 𝜇

)𝑇 
(4) 

here 

= 

1 
𝑁 

∑
𝑥 

𝑥 (5)

s the mean across all four classes. 

To find the eigenvectors 𝑤̄ that maximally differentiate the four

lasses, we solve the eigenvalue problem 𝑆 

−1 
𝑤 

𝑆 𝐵 𝑤̄ = 𝜆𝑤̄ using MATLAB’s

ig function. To ensure each eigenvector captures a unique aspect of the

lass differences (i.e., are independent), we orthonormalize the resulting

igenvectors using the Modified Gram-Schmidt algorithm ( Pursell and

rimble, 2018 ). 

The result of the LDA, performed on the PC coefficient timeseries

f the 4 classes (Early-Fast, Early-Slow, Late-Fast, and Late-Slow), is a

et of 3 dominant eigenvectors ( 𝜆1 , 𝜆2 , 𝜆3 ) which map the 35 PCs to a

orresponding eigenvalue. The eigenvectors define a subspace that max-

mizes the difference between the 4 classes while conserving the vari-

nce within each class. By taking these 3 eigenvectors and projecting

he complete ROI data (including those data not in the 4 classes used

uring LDA), first into its principal components, and then into the LDA

igenvectors via the inner product, the data is effectively reduced from

he original 354 dimensions to 3 dimensions. Additionally, since the PCs

orm an orthonormal basis, i.e., their inverse is equal to their transpose,

he LDA eigenvectors can be back-projected (via the dot product with

he transpose of the PC matrix) to give an ROI loading. 

In contrast to traditional GLM modelling, where reaction time is

ypically used as a regressor to generate a static spatial map (e.g.,

 Yarkoni et al., 2009 )), LDA is designed to identify a linear relationship

hat maximizes group average differences whilst conserving variability

ithin each specified class of a dataset. Projecting the data into these

esulting eigenbases may elucidate non-linear trends, and indeed the tra-

ectory analysis presented below demonstrates an inherently non-linear

elationship between BOLD activations across the task data ( Fig. 2 d). For

ater comparison with the results of LDA we calculate GLM beta maps

or reaction time and repetition regressors and these are presented in

upp. Fig. 4. 

The LDA eigenvectors used here are orthogonalized and as such pro-

ide unique (independent) information about group differences in the

ata. Whilst it can be useful to look at the loading on only a single eigen-

ector, the superposition of these vectors fully define the group differ-

nces and can be projected back to the original ROI space producing

nterpretable regional maps similar to traditional statistical parametric

aps. 

.9. Subject performance groupings 

Importantly, in this study Linear Discriminant Analysis is run on four

roupings of the data irrespective of the subject the data was recorded

rom, i.e., a given subject may have data in all four groups. This ensures
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Fig. 2. LDA results. a) Trial-averaged subject loadings for each repetition. Colormap indicates the repetition number. b) Trial-averaged subject loadings for each 

repetition. Colormap indicates trial average reaction time. The black line shows the repetition trajectory averaged across subjects. c) Unthresholded spatial maps of 

the 3 eigenvectors i)-iii) resulting from LDA. d) Repetition trajectory averaged across subjects for each of the 3 eigenmaps. Shaded areas show standard error of the 

mean. 
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<  
he resulting eigenmaps separate population-level BOLD activations pat-

erns. In order to investigate whether these maps can provide insight

nto specific-subject trajectories across repetitions, each subject’s aver-

ge reaction time across repetitions 1–2 was subtracted from their av-

rage over repetitions 4–6 as a measure of performance improvement.

hen, the average reaction time is computed over all repetitions as a

easure of general performance. Subject trajectories were then sorted

nto 3 groupings: Slow - performance improvement ⟨ 33rd percentile

nd average RT ⟩ 67th percentile; Fast - performance improvement ⟨
3rd percentile and average RT < 33rd percentile; and Improvers - per-

ormance improvement ⟩ 67th percentile. 

.10. Visualisation on surface 

We define a task manifold that aids visual comparison of the 3-

imensional trajectories across the task. In order to generate this man-

fold a general linear model (GLM) was fit to projected data for each

epetition (1–8) using reaction time as a regressor. This produced a

-dimensional vector, per repetition, within the embedding space that

apped to performance. These 8 vectors were then normalized by their

agnitude to produce 8 direction vectors in the embedding space that

orresponded to activity correlated with decreasing reaction time. That

s, each of the 8 repetitions are given a unique direction in state space

hich corresponded with reduced reaction time. The origin of each di-

ection vector is set to the population average loading for the corre-

ponding repetition, and then an arbitrary extrapolation of ±0 . 2 is made.
4 
inally, a task manifold is produced by interpolating these 8 lines in or-

er to form a surface. 

. Results 

.1. Characterisation of task performance 

The error rate for subjects selecting the appropriate response

left/right hand) following the instruction phase was always ∼10% (and

ypically much smaller, see Supp. Fig. 6b) after the first repetition of

ach unique set of instructions. This suggests that, for this particular

ask, a truncated exploration phase occurs wherein subjects are able to

uccessfully complete the task very early on within the course of each

rial. For this reason, the remaining repetitions of each instruction were

onsidered to form part of an exploitation phase, during which the brain

s likely optimising its configuration resulting in successful response.

he trial average for each of the 8 repetitions per subject was used as a

easure of task performance. The overall mean RT for the learning task

as 580 ± 140 ms. The distribution of RTs within each repetition was

imilar, with an observed decrease in the coefficient of variation from

arly to late repetitions, see Supp. Fig. 6. 

.2. Linear discriminant analysis 

Following the projection of the data onto its first 35 PCs, and us-

ng the criteria detailed in Section 2.5 , we split the data into 4 distinct

lasses (as shown in Fig. 1 c): Early-Fast (repetitions 1–4; reaction time

 20th percentile), Early-Slow (repetitions 1–4; reaction time > 80th
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c  

i  

q  
ercentile), Late-Fast (repetitions 5–8; reaction time < 20th percentile),

ate-Slow (repetitions 4–8; reaction time > 80th percentile). As detailed

n the Methods ( Section 2.8 ), the result of the LDA is a set of 3 dominant

igenvectors ( 𝜆1 , 𝜆2 , 𝜆3 ) which map the 354 ROIs to a corresponding set

f 3 eigenvalues. The robustness of these eigenmaps to changes in the

rbitrary class divisions used here are detailed in Supp. Fig. 2. Notably,

he maps are consistent for significant changes to these divisions with

3 shown to be the most sensitive. Furthermore, a split-half compari-

on was performed by running LDA on two random halves of the data

or 100 iterations, and showed a mean correlation between each subsets

igenmaps of 𝜆1 ∶ 𝑟 = 0 . 96 , 𝑝 = 10 −128 , 𝜆2 ∶ 𝑟 = 0 . 92 , 𝑝 = 5 × 10 −97 , and

3 ∶ 𝑟 = 0 . 27 , 𝑝 = 0 . 03 . 
Using this approach, the LDA embedding for each subject was aver-

ged across trials and blocks such that each subject had 8 data points

i.e., one for each repetition). Fig. 2 a shows the distribution of these rep-

tition averages with a clear trajectory from early-to-late and this corre-

ponds predominantly to loading onto the first LDA map - 𝜆1 (as shown

n Fig. 2 d). Fig. 2 b shows that RT improvement does follow this same

mbedding trajectory. Overall, the trajectories show a convergence at

iddle to late repetitions (reps 3–7), with a general deceleration to low

elocity in all 3 dimensions. 

.3. LDA eigenmaps 

Fig. 2 c shows the surface projections that correspond to the 3 re-

ulting eigenvectors ( 𝜆1 , 𝜆2 , 𝜆3 ) from the LDA. The first eigenmap – 𝜆1 
Fig. c-i) – had the highest discriminatory power between the 4 classes,

ith a dominant positive weighting for medial visual cortex, and dor-

al and medial prefrontal cortex. The second eigenmap – 𝜆2 (Fig. c-ii) –

ad broad positive weightings in the left-hemisphere dorsal prefrontal

nd premotor cortices, in addition to positive weightings in early ven-

ral visual stream and a contrasting negative weighting for dorsal visual

tream. The third eigenmap – 𝜆3 (Fig. c-iii) – had a positive weighting

or left-hemisphere ventral visual stream, in addition to negative weight-

ngs in the dorsal lateral prefrontal cortex and medial visual cortex. The

3 map also demonstrated high positive weightings for bi-hemispheric

omatosensory association cortex. 

.4. LDA eigenmap loadings 

The implications of these 3 eigenmaps are best observed by consider-

ng their population average loadings as a function of repetition number

Fig. d)). 𝜆1 loading had the highest amplitude across repetitions, sug-

esting task duration coincided with activation within the medial vi-

ual and medial prefrontal cortices. The 𝜆2 eigenmap demonstrated an

nverted-U relationship with repetition count, and hence highlights re-

ional activations that are unique for intermediate repetitions. 𝜆3 shows

 decelerating trajectory that converges for late repetitions. Importantly,

ince each eigenvector contributes a unique (independent) piece of the

rajectory, the complete activation map results from their superposition.

his means that loading onto 𝜆3 suppresses the medial visual activation

een in the 𝜆1 loading. Additionally, both 𝜆2 and 𝜆3 positively superim-

ose to give strong ventral stream activation in the left hemisphere, and

he high prefrontal cortical activation observed in 𝜆2 is constrained more

orsally due to the prefrontal deactivation observed in 𝜆3 . Finally, a bi-

emispheric activation of the somatosensory association cortex, from

he 𝜆3 map, plays a key role in task performance with a convergence to

igh loadings across the middle-to-late repetitions. 

.5. RT model 

For each repetition, a general linear model (GLM) was fit using reac-

ion time as a regressor to produce a direction vector within the embed-

ing space mapping performance. These RT direction vectors are unique

o each repetition and can be combined, in conjunction with the early-

ate trajectory averaged across subjects, to define a task manifold shown
5 
n Fig. 3 a. The results of Fig. 3 a distils those of Fig. 2 a and 2 b and clearly

emonstrate a non-linear shift in brain activity from early repetitions to

ate repetitions in addition to a reconfiguration of brain activity under-

inning reaction time, indicated by the folding and twisting of the task

anifold. 

.6. Subject performance 

In order to investigate differences between subject-specific trajecto-

ies, each subjects’ average reaction time across repetitions 1–2 was sub-

racted from their average over repetitions 4–6 and taken as a measure

f performance improvement. Then, an additional subject average reac-

ion time was computed over all repetitions as a measure of general per-

ormance. Subject trajectories were then sorted into 3 groupings: Slow -

erformance improvement ⟨ 33rd percentile and average RT ⟩ 67th per-

entile, Fast - performance improvement ⟨ 33rd percentile and average

T < 33rd percentile, and Improvers performance improvement ⟩ 67th

ercentile. 

The average trajectory of the 3 groups is shown in Fig 3 b. All 3 groups

ave a similar progression in 𝜆1 , which agrees with its correlation to

epetition count ( Fig. 2 a)). 𝜆2 shows that the overall Fast and Slow re-

ctors recruited dorsal lateral prefrontal cortex and the ventral visual

tream ( Fig. 2 c ii) in a manner similar for early repetitions, whereas

he improvers had a relatively delayed activation of these regions and a

ompensatory high activation late. The statistical significance of this dif-

erence is shown by the non-overlapping standard errors of each groups

ean trajectory. 𝜆3 loadings clearly distinguish the Slow trajectories

rom the group with an up to 50% lower loading during middle rep-

titions. Importantly, this means that Slow performers had weaker bi-

emispheric activation of the somatosensory association cortex known

o play a key role in object recognition ( Reed et al., 2004 ). Together,

hese results suggest that activation of the 𝜆2 map is a measure of per-

ormance stability since both fast and slow subjects had similar trajec-

ories in this dimension, and that activation of the 𝜆3 map is indicative

f performance optimization since both fast subjects and those show-

ng the greatest improvement have qualitatively similar and convergent

rajectories. 

.7. General linear modelling 

For comparison, we ran a more traditional approach by calculating

he GLM beta maps of ROI BOLD activity using reaction time and repeti-

ion regressors, as shown in Supp. Fig.2a-b. Notably these maps demon-

trated a faster reaction time corresponded to bi-hemispheric deactiva-

ion of premotor and somatomotor associations cortices, both medially

nd laterally, as well as dorsal lateral prefrontal cortices. And repetition

orresponded to activation of the medial visual and prefrontal cortices,

s well as the temporal pole. Since PCA is used before LDA in the cur-

ent methodology we additionally run both GLMs (RT and repetition)

sing the first 35 principal components and back-projecting the result-

ng beta maps (defined in PC-space) into the ROI space, shown in Supp.

ig. 2c-d. The truncated repetition beta map showed a correlation with

he first LDA eigenmap 𝜆1 , of 𝑟 = 0 . 66 , 𝑝 = 4 × 10 −49 and the truncated

T beta map showed a correlation with the second LDA eigenmap 𝜆2 ,

f 𝑟 = 0 . 43 , 𝑝 = 1 × 10 −18 . This supports the overall utility of the LDA

pproach presented here, whereby it is able to both capture insights

rom a more traditional method, whilst elaborating on performance tra-

ectories across the learning task to give a more nuanced description of

on-linear trends in the data. 

.8. Comparison to 1-back control task 

The dataset used in this study ( Mohr et al., 2016 ) also contained a

ontrol dataset where stimulus material and temporal structure were

dentical to the learning task, however, the subjects were instead re-

uired to perform a 1-back working memory task. Using an identical
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Fig. 3. Subject Performance. a) Task manifold generated by first computing the repetition trajectory as the subject-averaged loadings for each repetition (blue 1 

– red 8). A general linear model is then fit to each repetition for all subject loadings using reaction time as a regressor. The resultant beta weights are normalized 

to define a direction vector, indicative of performance, and this is then centred on the repetition trajectory. For visualization the direction vectors are extrapolated 

±0 . 2 . b) Average repetition trajectory for 3 groupings: Slow (RT improvement ⟨ 33rd percentile and average RT ⟩ 67th percentile), Fast (RT improvement < 33rd 

percentile and average RT < 33rd percentile), and Improvers (RT improvement < 67th percentile). c) LDA 1 repetition average loadings for the 3 groupings. Shaded 

areas show standard error of the mean. d) LDA 2 repetition average loadings for the 3 groupings. e) LDA 3 repetition average loadings for the 3 groupings. 
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nalysis pipeline to that from the learning analysis, i.e., first running

CA and performing LDA on the first 35 principal components, it can

e seen in Supp. Fig. 5a that two of the resulting eigenmaps are distinct

rom those found for the learning group. The first eigenmap from the

earning task has a strong correspondence to the second eigenmap from

he control group 𝑟 = 0 . 53 , 𝑝 = 8 × 10 −29 and is consistent with both

aps correlating with to their respective task repetition. 

. Discussion 

Our results demonstrate the utility of applying a trajectory analysis

o neuroimaging data. Specifically, we highlight key differences across

 spectrum of task performance within an otherwise seemingly simple

europsychological task by leveraging a combination of Principal Com-

onent Analysis (PCA) and Linear Discriminant Analysis (LDA). The em-

edding space that results from this technique is defined by a set of basis

rain maps that detail independent components contributing to these

ey differences while remaining sensitive to the subtleties within it. 

The task data analysed here entailed fMRI BOLD recordings captured

uring an instruction-based learning task with left-right button presses

rescribed to each of four patterns shown in the instruction phase. By

rst projecting the data into its principal components, LDA was used to

eparate the data into 4 groups: fast-early, slow-early, fast-late, slow-

ate. This results in a 3 dimensional embedding space optimally sensi-

ive to differences between these groups. Additionally, this embedding

pace is defined by an orthonormal basis which allows straightforward

rojections back to the ROI brain space for interpretability. Projecting

ubject data into LDA defined space and computing the population av-

rage trajectory across the eight repetitions showed a convergence to-

ards a more stable brain state configuration. Since trial error rates were
6 
lways ∼10% (and much smaller for most subjects) after the first repeti-

ion, this convergence betrays a phase of optimization (or exploitation)

herein subjects have identified the task parameters and thus act to re-

ne their behaviour and its underlying brain activity. Notably, subjects

ere not encouraged to perform this task as fast as possible and thus this

ptimization is likely motivated by energy efficiency constraints and re-

ource liberation ( Bassett et al., 2015 ). These results compliment those

f ( Mohr et al., 2016 ) who found this same learning dataset showed

ask automatization coincided with increase network integration across

ubjects. 

Using this combined PCA/LDA approach, we were able to identify

 task-specific manifold whose twisted geometry demonstrated a non-

inear shift in brain configurations across the task. Our results identified

 subject trajectory in these new bases that began with a large velocity

arly in the task, but then converged toward a more stable configuration

s the subjects began to optimize their performance. Importantly, our

pproach allowed for the comparison of subject trajectories which fall

ithin specific performance groups (fast, slow, and greatest improvers)

nd to map performance back to ‘brain space’ for interpretation. In other

ords, we could observe the reconfiguration of the brain across task

erformance, while also retaining sufficient variance for the analysis of

ndividual differences in task execution. 

Subject level trajectories grouped based on reaction time measures

howed that slow reactors had large trajectory deviations from both fast

ubjects, as well as the best improving subjects which constituted a di-

inished activation in the left visual ventral stream and bi-hemispheric

omatosensory association cortex. These slow performers also demon-

trated weaker deactivation in the left dorsal lateral prefrontal cortex

nd anterior insula ( Fig 2 c). The somatosensory association cortex is

nown to play a key role in object recognition ( Reed et al., 2004 ), and
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ts recruitment by the fastest and greatest improving subjects is consis-

ent with its use here in performance optimization. 

The frontoparietal network has been argued to play a central role

n adaptive implementation of task demands ( Cole et al., 2013 ) and

ule based problem solving ( Zhang et al., 2013 ) – this network involves

he dorsal lateral prefrontal and posterior parietal cortices, amongst

ther regions. Our results demonstrate that these areas are differen-

ially recruited and inhibited across an instruction-based task and high-

ights their importance in facilitating task performance optimization.

dditionally, rule instantiation in an instruction-based visual stimulus-

esponse task has been shown to predominantly involve activation of

he visual cortex ( Zhang et al., 2013 ) and our findings recapitulate this

esult whereby the first eigenmap ( Fig 2 c i), which differentiated early-

o-late brain states in the present task, showed broad visual activation. 

Learning has been shown to induce autonomy of sensorimotor ar-

as in a simple motor skills task by liberating cognitive control areas

in particular frontal and cingulate cortices ( Bassett et al., 2015 ). Al-

hough the task that we analysed was not explicitly designed to inter-

ogate meta-level learning, we did observe an increased recruitment of

rontal cortical regions, along with a disengagement of parts of the cin-

ulate cortex in the left hemisphere during early-to-intermediate phases

f the present task. Importantly, subjects with largest improvement in

eaction time across repetitions showed diminished activation of this

attern early in the task, and a compensatory activation to levels com-

arable with the overall fast reactors late in the task. 

A key benefit of our approach is that it provides a tractable means to

iew non-linear trends in multivariate measurements of brain activity

y reducing its dimensionality in a targeted fashion. That is, the dimen-

ionality reduction can be tailored to address the investigators specific

cientific hypothesis. For this reason, the approach is generalizable with

any applications appropriate beyond those presented in this work. In

onjunction with traditional methods, dimensionally-reduced trajectory

nalysis can provide complementary, but unique, insights into trends in-

erent within multi-dimensional brain data, and could have particular

tility in cognitive tasks where moment to moment changes in brain

tate are of paramount interest. One such application could be to ap-

ly PCA and LDA to time varying connectivity ( Esfahlani et al., 2020 )

hereby the trajectory of connectivity changes could be explored in

ontrast to the trajectory of region-wise BOLD activity presented here. 

There are many other dimensionality reduction techniques, such as

ndependent component analysis, Laplacian embedding, t-distributed

tochastic neighbour embedding (tSNE), general linear modelling, com-

unity detection, clustering, etc., in addition to principal component

nd linear discriminant analysis used in this work. 

This family of methods seek to optimise some cost function across a

iven dataset and can provide novel insight into trends in data. How-

ver, their utility hinges upon the neuroscience question to which they

re being applied ( Cunningham and Yu, 2014b ). In particular, dimen-

ionality reduction techniques have successfully elucidated system level

rends across a library of cognitive tasks ( Shine et al., 2019a ), during

emory encoding ( Heusser et al., 2021 ), and can reveal stable dynam-

cs during behaving animals ( Gallego et al., 2020 ; Kato et al., 2015 ). In

he present case, PCA and LDA were chosen as they provide basis for

aximally distinguishing group differences in a dataset were the group-

ngs have previously been defined, i.e., task repetition and subjects. Fur-

hermore, the resulting low-dimensional basis allows the process of data

rojection to be inverted such that manipulations made in the embed-

ing space can be resolved in the original region-of-interest brain space.

An important limitation of this work is that LDA highlights differ-

nces between the classes specified and not the features that the classes

hare. This means that the method is inherently hypothesis driven, in

hat partitioning of the data is required, and thus is an unavoidable bias

onstrained by the investigators line of questioning. Other data driven

ethods, such as PCA, can supplant this deficit by remaining blind to a

iven hypothesis and instead highlight shared features of the data – i.e.,

rincipal axes of covariance. 
7 
onclusion 

Here we demonstrate the utility of a dimensionally-reduced trajec-

ory analysis of neuroimaging data captured during a simple instruction-

ased visuomotor task. This kinematic perspective reveals nonlinear

hanges in brain state that coincide with a convergence to stable config-

rations late in the task. Furthermore, the brain state kinematics can be

reely transformed back into ROI space, and thus afford unique insights

nto how canonical control networks are differential recruited during

ask optimization. The generality of this approach permits utility well

eyond the application presented here, and thus can complement stan-

ardized methods for analysing brain data during cognitive tasks. 
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The code used for all analysis of the data in this study is available

rom the corresponding author on request or can be found at https://
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