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To first order, the structural connectivity of the brain is static 
compared to the neural activity it supports. In contrast, action 
and perception adapt with the fast time scales of the external 

milieu. Understanding how the relatively static structural architec-
ture of the brain supports the flexible neural dynamics required for 
adaptive behavior lies at the heart of neuroscience. On the surface, 
the solution is enticingly simple: flexibility is attained through the 
transient recruitment of specialized neural systems required by the 
current context1. Doing so affords substantial energetic and com-
putational advantages, optimizing (1) selective attention to salient 
stimuli; (2) metabolic efficiency2,3; (3) learning statistical regulari-
ties in a changing milieu4; (4) fast and accurate action selection5; 
and (5) autonomous, self-organizing processes6. But how do these 
flexible and adaptive macroscopic dynamics derive from biophysi-
cal processes at the microscopic level?

Although there are many possible ways of endowing a system 
with flexibility, one important mechanism involves neuromodula-
tion, which we define as cellular-level processes that change core bio-
physical properties of the neuron without necessarily causing the cell 
to fire an action potential—such as the alteration of neural gain7,8, 
which quantifies the relationship between the input (dendritic) and 
output (firing rate) activity of a neuron (Box 1). Importantly, this 
relationship is not static but rather changes as a function of the neu-
ron’s current state, as captured by the gradient (slope) of a neuron’s 
input–output mapping (or activation function; Fig. 1). In this way, 
the impact of a single incident spike on a neuron’s output depends 
on the level of coincident activity. Neural gain can be modulated 
through a variety of mechanisms, including the augmentation (or 
diminution) of the response properties of neurons or their circuits9,10, 
changing the sensitivity of a neuron to its inputs in a manner that is 
independent of its specificity7,11 (that is, its receptive field7,8).

By definition, although neuromodulation is a process that occurs 
at the microscopic level, behaviorally relevant changes typically 

manifest at the mesoscopic level of neural populations and circuits. 
Considered individually, neuromodulatory tuning of neurons is 
incremental. However, in a critically stable system such as the cerebral 
cortex, small changes can accrue, tipping the balance of excitation/
inhibition and large-scale activity12. Individual neurons effectively 
play a democratic role in larger ensembles, with their spiking activ-
ity ‘voting’ for inputs received from their afferents. Accordingly, 
neuromodulation can be framed as downstream neurons ‘listening’ 
more closely to each neuron’s vote and either up- or downregulating 
their contribution to the final tally. This collective characteristic of 
neural systems makes them amenable to computational modeling 
approaches in which neural activity at the population level can be 
effectively condensed into a handful of key summary statistics13.

Considerable recent work has used alterations in a simple neural 
activation function to model neuromodulatory actions across the 
brain14–18. These studies represent a step towards linking microscopic 
activity to meso- and macroscopic scales. Despite much progress, 
there remain considerable challenges to linking the insights from 
these biophysical approaches to computational frameworks for 
understanding cognition19. For instance, a rich literature currently 
links the processes supporting active inference to changes in neu-
romodulatory tone20,21, but less work has integrated these findings 
with the microscopic mechanisms and macroscopic impact of neu-
romodulatory neurotransmitters22.

There are many ways in which neuromodulation can temper the 
detailed microcircuitry of the brain to shape meso- and macroscale 
dynamics. In this review we aim to expose this detail, describing 
how these insights can be modeled in a more nuanced way at the 
mesoscopic level than with prevailing approaches. We first review 
the mechanisms of neuromodulation, moving from basic neurobi-
ology to biophysical modeling. We then suggest links between these 
accounts of neuromodulation and the principles of information 
flow in the cerebral cortex during perception and active inference.

Computational models link cellular mechanisms of 
neuromodulation to large-scale neural dynamics
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Decades of neurobiological research have disclosed the diverse manners in which the response properties of neurons are 
dynamically modulated to support adaptive cognitive functions. This neuromodulation is achieved through alterations in the 
biophysical properties of the neuron. However, changes in cognitive function do not arise directly from the modulation of indi-
vidual neurons, but are mediated by population dynamics in mesoscopic neural ensembles. Understanding this multiscale map-
ping is an important but nontrivial issue. Here, we bridge these different levels of description by showing how computational 
models parametrically map classic neuromodulatory processes onto systems-level models of neural activity. The ensuing criti-
cal balance of systems-level activity supports perception and action, although our knowledge of this mapping remains incom-
plete. In this way, quantitative models that link microscale neuronal neuromodulation to systems-level brain function highlight 
gaps in knowledge and suggest new directions for integrating theoretical and experimental work.
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The neurobiology of neuromodulation
Neuromodulation encompasses a variety of mechanisms. The 
effects can occur on dendritic sites distal or proximal to the cell 
body, and include a number of distinct processes such as modifica-
tion of neurotransmitter receptor density on the synaptic cleft, the 
liberation of intrinsic calcium (Ca2+) stores and the recruitment or 
suppression of classes of voltage-gated ion channels. To illustrate 
canonical forms of neuromodulation, we highlight five exemplar 
mechanisms by which the biophysical properties of individual neu-
rons can be modified (Fig. 2). This list is by no means exhaustive, 
but the categories we have identified capture many of the key prin-
ciples identified in the neuroscience literature.

Neuromodulation can occur via the up- or downregulation of 
ligand-gated glutamate receptors on postsynaptic boutons (Fig. 2a).  
This amplifies the resulting excitatory postsynaptic potentials 
(EPSPs) of afferent spikes, favoring excitation (depolarization) and 
a higher likelihood of eliciting an action potential. In contrast to 
glutamate, GABA (γ-aminobutyric acid) receptors are typically 
associated with membrane hyperpolarization8: GABAA receptors 
produce a relatively fast ionotropic Cl– conductance whereas GABAB 
receptors are metabotropic and mediate a slower, longer-lasting K+ 
conductance. Upregulation of GABAA increases the amplitude of 
inhibitory postsynaptic potentials (IPSPs) in local circuits and, in 
doing so, shifts the local ionic balance towards inhibition (Fig. 2a). 
GABA-containing cells are found throughout the brain, acting as 
interneurons in the cortex23,24 and cerebellum25; striatal and pallidal 
cells in the basal ganglia26; and inhibitory cells within the reticular 
nucleus, parabrachial nucleus or the zona incerta27. Each of these 
cell populations imposes important inhibitory constraints on neigh-
boring excitatory cell populations. Additionally, GABAB receptors 
can inhibit their own activity through negative feedback by activat-
ing inward-rectifying K+ channels and inhibiting voltage-activated 
Ca2+ channels. Through this mechanism, the reduction of neu-
rotransmitter release decreases both IPSP and EPSP amplitudes. 
The balance between EPSPs and IPSPs shapes mesoscale oscilla-
tory dynamics28 and asynchronous states29 that, in turn, mediate the 
macroscopic brain patterns that support cognition and attention30,31.

Neuromodulation of dendritic inputs into the soma also shapes 
the response properties of the neuron. The balance between dif-
ferent subclasses of glutamatergic receptors has a more nuanced 
impact on neuronal responsiveness than a simple up- or downregu-
lation of EPSP amplitude (Fig. 2b): opening AMPA receptors yields 
fast EPSPs32 whereas N-methyl-d-aspartate (NMDA) receptors 
mediate slower postsynaptic processes33. Crucially, NMDA recep-
tors are voltage sensitive, requiring the removal of a Mg2+/Zn2+ plug 
that is released following partial depolarization34. The amplitude of 
NMDA EPSPs is thus dependent on the membrane potential, with 
larger EPSPs in partially depolarized neurons. In this way, NMDA 
receptors amplify concurrent AMPA-mediated input and, as such, 
are critical to rapid synaptic plasticity in sensory systems35. Altering 
the relative density of these two classes of glutamatergic recep-
tors thus reshapes the time scales of local circuits and shifts their 
responses from approximately linear to super-additive36.

The biophysics of a neuron can also be modulated through 
the activation of different classes of G-protein-coupled metabo-
tropic receptors. These transmembrane receptors typically fall 
into two main classes (Gq and Gs/i)37 whose α-subunits trigger 
second-messenger cascades to alter the dynamics of neural activ-
ity (although Gs/Gi utilize the same second-messenger systems, they 
stimulate and inhibit the cascades, respectively). Receptors from the 
Gq class catalyze the formation of the signaling molecule inositol 
tri-phosphate (IP3), which leads to the release of stored Ca2+ from 
the endoplasmic reticulum. This causes a transient increase in the 
resting transmembrane potential38 that brings the neuron closer to 
its intrinsic firing threshold, such that fewer presynaptic inputs are 
required to trigger an action potential (Fig. 2c). In other words, the 
neuron has become more excitable and will fire more frequently 
given the same input.

The response profiles of neurons can also be altered at the cell 
soma through different second-messenger effects. For instance, 
increases in intracellular Ca2+ activate additional voltage-sensitive 

Box 1 | The many faces of neuromodulation

Postsynaptic responses to synaptic input include immediate 
changes to the membrane potential via ion currents, as well as 
slower changes to the biophysics of the neuron. Our working 
definition of neuromodulation invokes these latter cellular-level 
processes, modifying the biophysical properties of the neuron 
without necessarily causing the cell to fire7,8. Note that these 
changes comprise changes to membrane biophysics—and hence 
the response profile of the neuron—as well as changes to the 
postsynaptic dendritic compartment, modifying the effective 
connectivity strength between neurons. This perspective allows 
us to focus on a set of neurochemical processes that change the 
receptivity or excitability of individual neurons in their immedi-
ate neighborhood7,8. However, the multiscale organization of the 
brain suggests that there are a number of other plausible mecha-
nisms of neuromodulation—for example, the formation (or 
elimination) or synapses and hence changes in network connec-
tivity within circuits; alterations in the likelihood of neurotrans-
mitter release from a presynaptic cleft following an action poten-
tial due to the axonal localization of neuromodulator receptors; 
or the various roles of glia and blood vessels that place metabolic 
constraints on neural activity, including energetic considerations 
and the reuptake of neurotransmitters. Although these process-
es, and their interactions, will have a substantial effect on neural 
dynamics, they are not examined in this piece.
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Fig. 1 | Single-neuron gain. The response of a neuron to an incoming spike 
is not static but depends on both its current state and key biophysical 
properties. Incoming action potentials to a neuron’s dendritic tree (blue) 
induce a volley of action potentials prescribed by the neuron’s current 
position on its activation function (blue dot; lower left panel). Any additional 
input (ΔI, red) shifts the activity of a neuron up its activation function (black 
line) and increases its output firing rate (ΔQ, green). Neural gain quantifies 
this scaling relationship between the input and output activity (firing 
rate) of a neuron. More formally, neural gain is the gradient (slope) of the 
input–output mapping function for a neuron, dQdI . Note how the output of the 
neuron is nonlinearly related to the input current to its dendrites.
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ion channels39,40 and can augment interspike intervals by either 
shortening the refractory period41 (for example, by inactivating 
T-type Ca2+ channels; Fig. 2d) or modifying the action potential 
threshold (for example, via a reduction in Ca2+-sensitive K+ cur-
rent34; Fig. 2e). The activation of the alpha subunit of both the Gq 
and Gs/i subfamilies can mediate these effects (albeit via the activa-
tion of different kinase families), as can both the coupling of the 
β/γ G-protein subunits of each receptor class. Ionotropic receptors 
can themselves be the downstream targets of the ascending arousal 
system, and hence also amplify local neuromodulatory effects. A 
prominent example of this effect occurs in the thalamus at the tran-
sition from sleep to wake42. Following a triggering signal from the 

hypothalamus that recruits the ascending arousal system43,44, glu-
tamatergic nuclei within the thalamus shift their dynamics from 
a hyperpolarized burst mode during sleep to a depolarized tonic 
mode when awake. The projections from these nuclei then transi-
tion the cerebral cortex into a high conductance state45, promoting 
excitability46 and transforming the modes of information transfer 
between sensory and heteromodal cortical regions47.

There thus exists a myriad of biophysical mechanisms of 
cellular-level neuromodulation, extending through all compart-
ments of the cell. We now review how these mechanisms are selec-
tively and flexibily recruited by the ascending neuromodulatory 
system.
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Fig. 2 | Sites of cellular neuromodulation. a–e, Neuromodulation acts on the biophysical properties of neurons. We consider five canonical types of 
neuromodulation acting on the biophysical properties of individual neurons: (a) upregulation of ligand-gated glutamate or GABA receptors; (b) modification 
of ligand-gated glutamate receptors altering the time scales of postsynaptic currents, Ιsyn; (c) liberation of intracellular Ca2+, which moves the resting 
membrane potential of the cell closer to the firing threshold; (d) upregulation of rectifying voltage-gated channels and hence changing the refractory period; 
and (e) changing the mixture of rectifying voltage-gated channels to modify the firing threshold (orange line). By acting on distal synapses and dendrites, 
the first two mechanisms primarily change the response of the neuron to its inputs. The third mechanism shifts the transient resting membrane potential. 
Through changes in the cell soma, the fourth and fifth mechanisms impact on the conversion of these inputs to outputs (firing rates).
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The ascending neuromodulatory arousal system
Combinations of the cellular mechanisms described above are uti-
lized by a distributed set of monoaminergic and cholinergic nuclei 
that project widely throughout the brain (Fig. 3). The local actions of 
these neurochemicals are heterogeneous, exerting their neuromod-
ulatory influence through various combinations of the biophysical 
effects described above. Specifically, through the engagement of dis-
tinct G-protein-coupled second-messenger systems48, the arousal 
system mediates a range of microscopic effects that subsequently 
modulate macroscale neural dynamics44 in a manner that mediates 
cognitive function49 (Fig. 3).

At the microscale, each arm of the ascending arousal system 
engages with distinct classes of neuromodulatory receptors that 
typically align with the two major G-protein subfamilies (Fig. 3d). 
A single neuromodulatory ligand can bind to different receptor 
classes, and in a concentration-dependent manner. For instance, at 
low concentrations, noradrenaline preferentially activates α2 adr-
enoreceptors, which have a relatively high affinity for noradrena-
line. These receptors belong to the Gi class, which in turn closes 
(or opens) voltage-gated ion channels in both dendritic and somatic 
compartments50 (Fig. 2d,e). In contrast, higher concentrations of 
noradrenaline activate α1-mediated Gq receptors51, which ultimately 
liberate intrinsic Ca2+ stores and hence alter neuronal excitability 
(Fig. 2c). Through their interactions, these competing effects are 
thought to yield the ubiquitous inverted-U-shaped response curves 
that characterize many cognitive functions (Fig. 3a) such as sensory 
perception52,53 and apprehension49.

Neuromodulation can also alter current flow within neurons 
and hence change their complex response properties. Thick-tufted 

layer V pyramidal cells, in addition to being capable of generating 
action potentials at the soma, can facilitate large calcium spikes 
at an apical initiation zone. There is evidence that the interac-
tion between the apical and basal dendritic zones of these cells is 
under neuromodulatory control54. Hyperpolarization-activated 
and cyclic nucleotide-gated (HCN) channels electrically isolate the 
apical and basal dendritic compartments of the layer V pyramidal 
cell by attenuating back-propagating sodium action potentials55–57. 
Importantly, noradrenaline deactivates these channels via a drop 
in cyclic adenosine monophosphate (cAMP) that occurs following 
the activation of α2 receptors58,59 (Fig. 3b). This processes closes the 
HCN leak current and causes a nonlinear increase in burst-firing60, 
which increases neural gain61.

These mechanisms highlight the importance of the laminar 
topography of different neurotransmitter receptor families in the 
cortex62–64. Quantitative in vitro receptor autoradiography of the 
postmortem human brain at micrometer resolution has shown 
that α1 receptors are predominantly expressed in layers I–III of 
the primary visual cortex62, whereas α2 receptors (which facilitate 
pyramidal cell burst-firing58,59) are selectively enriched in layers 
II–IV62 (Fig. 3e). These two receptors activate distinct G-protein 
families (Gq and Gi, respectively), suggesting distinct impacts on 
the timescale and shape of the neural response function, depend-
ing on target receptor location. In contrast, muscarinic cholinergic 
receptors of the Gq subfamily (that is, M1/3/5) are known to be highly 
expressed in infragranular layers65, whereas nicotinic cholinergic 
receptors (which work on a more rapid timescale than metabo-
tropic receptors) are typically enriched in granular layers, particu-
larly in primary sensory cortices62,66, although these patterns change  
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substantially across the cortical mantle. Through these interactions, 
the combined effects of different neuromodulatory neurotransmit-
ters, rather than the effect of one specific family, together modulate 
whole-brain dynamics67.

The different arms of the ascending arousal system show substan-
tial heterogeneity in their projection targets, as well as in the regional 
expression of different receptor subclasses. For instance, 5HT1 sero-
tonergic receptors are enriched in sensory regions62,68 whereas dopa-
minergic receptors are preferentially expressed in prefrontal cortex 
and striatum69. Similarly, the two major alpha-adrenergic cell classes 
in the cerebral cortex (α1A and α2A) also show marked differentiation 
across the cortical hierarchy (Fig. 3f), suggesting that their differen-
tial regional expression, laminar enrichment and modes of action 
tune macroscopic whole-brain processing modes. Consistent with 
this notion, the spatial topography of a number of major neuro-
modulatory groups coincides with the complexity of systems-level 
cortical activity across diverse cognitive tasks67.

In sum, independent arms of the ascending neuromodulatory 
systems engage cellular-level neuromodulatory biophysics in a tar-
geted manner through their layer-specific projections and unique 
spatiotemporal profiles. Despite recruitment of unique receptors, 
the ultimate effects of different neuromodulatory ligands on the 
brain are region and state dependent. Importantly, our understand-
ing of interactions between neuromodulation and distinct neural 
populations will undoubtedly grow in complexity with further 
research into nervous system heterogeneity, particularly regarding 
those neural processes that have traditionally been challenging to 
study in the laboratory. For example, layer V pyramids are easy to 
patch in vitro and consequently may be overemphasized as sites of 
action for neuromodulators. Conversely, interneurons, thalamo-
cortical synapses or layer II/III recurrent circuitry probably play 
a greater role than has generally been appreciated70. With this in 
mind, we now turn to the role of population neural models in inte-
gration across scales of action and activity.

Modeling the impact of neuromodulation on mesoscopic 
brain dynamics
Although enacted at the subcellular scale, the influence of neuro-
modulation on cognition and behavior does not derive from the 
tuning of individual neurons, but through the selection and mobi-
lization of population activity across the cortex. The activity of any 
region or nuclei is embedded in the emergent patterns across the 
remainder of the system. There are a variety of mesoscale circuits 
in the brain, each with their own idiosyncratic patterns of intercon-
nection that shape their activity and functional role. Importantly, 
local circuits and connection motifs can provide influential, and 
sometimes counterintuitive, constraints on the firing properties of 
individual neurons71. For instance, if an inhibitory neuron is recip-
rocally connected to an excitatory neuron but has a faster refresh 
rate (which is often the case), then stimulation of the inhibitory 
neuron can actually lead to a paroxysmal rebound increase in the 
firing rate of the excitatory neuron72.

While the task of translating between microscopic and meso-
scopic levels is challenging, methods developed in the study of 
other complex systems provide a robust analytic framework73. Key 
among these methods is “mean field reduction” (Box 2), which pro-
vides a theoretical framework that links the neuromodulation of the 
response properties of individual neurons to the activity of popula-
tions, systems and circuits. The origins of mean field descriptions 
of neural activity date back half a century74,75. Rather than engaging 
neural activity at the scale of a single neuron (like the Hodgkin–
Huxley model), they approximate the activity of populations of neu-
rons by parametric probability distributions that change over time13.

The tractability of these models rests on a key assumption—the 
diffusion approximation—which states that if the population is large 
and correlations amongst the neurons are sufficiently weak, then 

the dynamics of just the first two moments of the population dis-
tribution (that is, the mean and variance) are sufficient to describe 
the population behavior76. These models permit the ensemble 
to consist of heterogenous, locally correlated and highly nonlin-
ear units (that is, neurons), while their population behavior can 
nonetheless be captured by relatively simple and low-dimensional 
representations77. The mean and variance of this firing rate distri-
bution depend upon aggregate synaptic inputs and the composite 
of all stochastic effects, respectively. These two summary statistics 
characterize the activity of the population of neurons13 and can be 
systematically analyzed, affording computationally efficient access 
to key principles that emerge at coarser spatiotemporal scales.

Reducing high-dimensional systems to the dynamics of their 
mean and variance achieves an enormous reduction in dimension-
ality. Nonetheless, the resulting models remain analytically complex 
and are often further simplified by assuming that variance is static, 
leaving all the dynamics to be expressed through the population 
mean. The simplified models in turn come in two broad flavors: neu-
ral mass models, which describe discrete local populations (nodes) 
interacting through long-range axonal connections75,78; and neural 
field models, which treat the cortical sheet as a continuous mani-
fold with long-range interactions mediated by subcortical loops79. 
Notably, where local neural populations differ fundamentally (such 
as pyramidal versus inhibitory interneurons), local circuits com-
prising two or more subpopulations can be accommodated80,81.

The activation response of an individual neuron is classically  
an all-or-nothing step function, with a threshold above which the 

Box 2 | Neuromodulation in biophysical models of large-scale 
brain dynamics

Even at the large scale, neuronal dynamics are fundamentally 
nonlinear and, under the influence of neuromodulation, errati-
cally switch between different temporal modes127 and spatial pat-
terns128 of activity, as shown empirically116 and recapitulated in 
population-based models15,129–131. The presence of nonlinear fin-
gerprints in these large-scale dynamics violates the assumptions 
in simplified locally quasilinear population models, but leaves 
open intriguing possibilities for understanding how large-scale 
nonlinear assemblies self-organize and how they contribute 
to the adaptive, multimodal capabilities of human cognition. 
Likewise, whereas learning in deep neural networks is achieved 
through a single mechanism (changing edge weights), plasticity 
in neural systems has multiple time scales and includes changes 
to the height, steepness, state and asymmetry of the population 
gain function (Fig. 2). Understanding the impact of these on 
systems-level activity can be achieved by combining numerical 
simulation and formal analysis, such as the prediction of tempo-
ral spectra and spatial modes.

The integration of this approach with experimental studies of 
neuromodulation is a fertile area for testing and refining models 
of neuromodulation. Modeling suggests new ways of analyzing 
functional imaging data—such as looking for statistical 
fingerprints of critical transitions and multistability125—whereas 
experimental studies allow manipulation of both brain and 
behavior with targeted pharmacological agents132. Use of 
empirical biobanks, such as the Allen Brain Micro-Array Atlas, 
allows mapping of complex, large-scale cortical dynamics 
onto the spatial distribution of metabotropic neurotransmitter 
receptors, thereby unveiling interscale mechanisms67. Using 
such system-level features, cognitive correlates across groups or 
individuals can provide informed, whole-brain mechanisms that 
accommodate both neurophysiological and neuroanatomical 
substrates.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


Review Article NaTUre NeUroscIence

neuron fires an action potential. A common form of this neural acti-
vation (Fig. 4a, left) shows that subthreshold currents produce no 
spiking activity, while increasing suprathreshold currents induces a 
monotonically increasing spike rate that asymptotically approaches 
a maximum value. A key feature of neural mass and neural field 
models is the corresponding population activation function that 
maps local average membrane potential to mean population fir-
ing rate82. This population function results from convolving the 
single-neuron activation function with a unimodal distribution of 
individual cell thresholds (or, equivalently, a unimodal distribution 
of local membrane potentials; Fig. 4a, middle).

A simple step function for individual neurons yields the widely 
used symmetric sigmoidal gain function, whereas a more general 
single-neuron firing function gives an asymmetric (skewed) popu-
lation activation function (Fig. 4a, right). A tangent to this function 
at any point captures the increase in mean activity generated in the 
postsynaptic population per additional input activity, and defines 
the population gain. The point of inflexion in the gain function is 
centered at the mean threshold of neurons in the population and, 
according to the diffusion approximation, the width of the function 
reflects the population variance in the thresholds13.

Like a volley of arrows, fluctuations in firing rate propagate 
outwards to neighboring regions, arriving in waves of afferent pre-
synaptic barrages. Although neural mass and neural field models 
treat the outward propagation in distinct ways, they both model 
the conversion from afferent input to changes in mean potential 
in the same way: by a function that captures the filtering of synap-
tic transmission and dendritic propagation to the cell soma. This 
conversion is modeled with a temporal kernel (that is, a bandpass 
filter) with characteristic rise and fall times, which is effectively a 

population PSP. Technically speaking, individual PSPs can be well 
captured by a gamma distribution. Given that the sum of gamma 
distributions is itself a gamma distribution, the sum of many EPSPs 
essentially yields a gamma-like population dendritic response 
function (Fig. 4b).

The microscopic mechanisms of neuromodulation on the bio-
physics of single neurons can be incorporated into population 
models to study their large-scale consequences. Accordingly, each 
of the five microscopic processes reviewed above can be mapped 
onto distinct mechanisms at the population level. Neuromodulatory 
influences at the synapse impact on the amplitude and shape 
of the dendritic temporal kernel. For instance, upregulation of 
ligand-gated glutamate channels at the postsynaptic cleft increases 
the amplitude of the dendritic kernel (Fig. 4c,d) while maintaining 
its shape. Although there is no change in the population activation 
function, a volley of afferent inputs will lead to a greater increase 
in local membrane potential, pushing the local population to a 
steeper region of the function and thus a higher population gain. 
Conversely, increasing the density of GABA receptors amplifies the 
effect of hyperpolarization of afferent inputs (Fig. 4c). In contrast 
to glutamate, enhancing the influence of inhibition pushes the local 
membrane potential to the left of the population gain function, to a 
flatter region of the sigmoid curve, thereby suppressing the effect of 
further excitatory or inhibitory inputs. Together these postsynaptic 
potential augmentations present a rapid, transient means for vary-
ing excitatory–inhibitory balance.

The population synaptodendritic response function is a 
weighted average of the individual synaptodendritic filters in the 
ensemble. The shape of this ensemble kernel can thus be modified 
by neuromodulators that alter the ratio of fast-acting AMPA and 
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slower-acting NMDA glutamate receptors (Fig. 4b). The ensemble 
function acts as a (bandpass) temporal filter of afferent activity83 
that defines the temporal aperture of the population, and hence the 
time scales over which the population can differentiate between 
consecutive inputs: faster time scales (narrower response func-
tions) allow for the demarcation of individual inputs but are blind 
to higher-order statistics (Fig. 4d, top), whereas slower scales (wider 
response functions) smooth a train of erratic inputs together into 
a broad response (Fig. 4d, bottom). Modification of response time 
scales leaves the overall amount of excitation/inhibition unchanged 
(that is, the total current remains constant), but shifts the balance 
between excitation and inhibition at particular time scales. For 
instance, the timescale change can result in stronger excitation at 
fast time scales and stronger inhibition at slower time scales, pref-
erentially propagating faster (and diminishing slower) inputs to the 
population. If sufficiently pronounced, these effects can stabilize 
resonances in corticosubcortical loops, breaking weakly asynchro-
nous states and yielding large-scale oscillations. Finally, the precise 
temporal correlations within and between populations are also tied 
to the time scales of the response: slower time scales result in inte-
gration of proximal inputs with distal ones and are more forgiving 
of slight temporal misalignment, thus shifting the range of coinci-
dence detection84. In this way, neuromodulators may act to shift the 
brain between segregated and integrated modes of processing85.

As reviewed above, some neuromodulatory ligands also liberate 
intracellular Ca2+ from internal compartments, transiently depolar-
izing the membrane potential (Fig. 2c). This lowers the additional 
current necessary to initiate an action potential and pushes the 
membrane potential to a steeper region of the sigmoidal population 
response function (Fig. 4c). Firing rates in the brain are typically 
well below their maxima and, furthermore, the upper bound repre-
sents an information-poor (that is, saturated) state86. This feature is 
important, since the gain of a population increases with membrane 
potential until it reaches half the maximum firing rate, after which 
point it drops with further increases. Since nominal population fir-
ing rates in the brain are well below this central value, increasing 
the average membrane potential via intracellular Ca2+ liberation will 
typically increase the input–output gain of the population.

Neuromodulatory processes that act extrasynaptically impact 
on the sigmoid-shaped population activation function. As 
reviewed above (Fig. 2d,e), cellular processes that modify rectifying 
voltage-gated channels alter the time it takes for neurons to reset 
to their resting potential after firing50. Upregulation of these chan-
nels near the soma shortens the relative refractory period. This has 
the effect of making a neuron’s response function more step-like—
reducing the repertoire of supported spike rates—such that supra-
threshold currents support higher firing rates (Fig. 4c). The extreme 
case of a highly sensitive cell soma leads to an effective step function 
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for firing modes: either ‘on’ or ‘off ’. The convolution of this effective 
step function with the Gaussian probability distribution of states 
results in a perfectly symmetric sigmoidal population response 
function (Fig. 4d). Modification of the mix of voltage-gated ion 
channels through second-messenger systems alters the single-cell 
firing threshold (Fig. 4d): at the population level, this corresponds 
to a shift in gain function to the left or right accordingly while pre-
serving its shape.

Finally, the width of the population activation function reflects 
the variance across the population in firing thresholds and in the 
momentary states of individual neurons Some population models 
do modulate this shape parametrically, supporting links to preci-
sion modulation in inference frameworks (Box 2). The variance 
of firing thresholds could be altered by any neuromodulatory pro-
cess that targets a specific class of cells within a local circuit, hence 
increasing the heterogeneity across that population. The population 
variance of states is an ensemble property and not easily directly tar-
geted by intracellular processes. However, as reviewed above, some 
neuromodulatory process are triggered only during certain firing 
regimes, thus increasing the local dynamic variability and broaden-
ing the population activation function. These more nuanced mech-
anisms further expand the full toolkit of modulatory effects likely to 
be in play during cognition.

In sum, mean field approaches are tractable models that approxi-
mate mesoscopic-level activity while retaining sensitivity to many 
of the underlying microscopic elements of the system. Using these 
approaches, it is possible to map the microscopic mechanisms of 

neuromodulation onto the temporal response curves and input–
output mappings of large-scale models. This approach reveals a 
myriad of adaptive “levers” for the ascending arousal system: ampli-
fying interareal coupling; contracting or dilating temporal response 
windows; shifting local population states toward their maximum 
gain; and reshaping the higher ends of population responses. We 
return to this below.

Alteration of macroscopic circuits in the cerebral cortex to 
mediate cognitive function
Adaptive cognitive function is thought to derive from coordinated 
mesoscopic circuit dynamics4,87. Indeed, there is empirical evidence 
that behavioral performance is better explained by population-level 
activity than that of individual neurons88,89. Distributing the support 
of complex behavior across coupled subsystems confers numerous 
computational benefits, including resilience to noise and the pro-
motion of response variability90,91. We now review research linking 
the cellular-level effects of the ascending arousal system with meso-
scale dynamics that underpin cognition, learning and awareness.

The architecture of the cerebral cortex is characterized by a hier-
archy of circuit complexity8,9. Low-level regions of sensory cortex, 
where activity is tethered to the statistics of the external world10, 
possess a thickened granular layer. In limbic regions, the cortical 
pattern morphs to encompass a more homogeneous, agranular 
structure. The majority of isocortex lies between these poles as an 
admixture of the two cortical archetypes. Infragranular pyramidal 
cells in agranular regions typically send feedback projections to the 

Box 3 | Neuromodulation precision in computational cognitive models

A key challenge is to harmonize the role of neuromodulation in 
computational accounts of cognition with biophysical models of 
population activity133. In computational accounts of active inference, 
neuromodulatory transmitters such as dopamine, noradrenaline 
and acetylcholine play a key role, through gain control, in tuning 
the precision of predictions and sensory evidence, and in signal-
ing uncertainty and reward prediction error21,22. Thus, the goal of 
reconciling biophysical and computational models of cortical func-
tion can be recast as mapping the changes in value, precision and 
prediction error of beliefs and evidence onto modulations in the 
sufficient statistics of mean field descriptions of neuronal activity. 
As a first pass, it is tempting to link the representation of causes and 
their precision in perception and inference one-to-one to the mean 
and variance of population-density firing rates134–136. Moreover, as 
populations of neurons interact, the resulting mutual changes in 
their population densities could map directly onto the type of belief 
updating expected under the assumption of active inference137,138.

We have endeavored to exploit the opportunities inherent within 
mesoscale computational models to link the mechanisms and 
functions of neuromodulation across spatial scales of organization. 
To illustrate this, we selected a handful of canonical processes at 
the microscopic scale, explored their functional and biochemical 
implementation and mapped them onto macroscopic mechanisms 
at the macroscale. Each of these steps rests upon substantial 
theoretical abstractions and simplifications. Considerable further 
empirical and theoretical work is required to improve the veracity 
of each of these steps, and to understand more deeply their specific 
contributions to human cognition. The ambition to integrate 
multiscale neural activity to cognition in a unified framework 
also highlights the mismatch between the wealth of microscopic 
mechanisms and the brute force abstraction of high-level models, 
hence the suggestion of the next steps forward.

Neuromodulatory tone has been linked to influential models 
of predictive coding139 and active inference140. Although the 

precise implementations vary, most such models attribute 
different mechanisms to modulation of the precision (the inverse 
of the variance) of previous beliefs or sensory evidence, versus 
the amplitude of the mismatch (prediction error) signal141. 
For example, recent work suggests that both dopamine and 
acetylcholine play a role in the precision weighting of prediction 
errors, albeit at different levels of the cortical hierarchy142, 
whereas ionotropic neurotransmitters signal predictions and 
prediction errors by themselves35. In this view, the firing rates 
of neural assemblies convey the expected sensory causes of 
fast evoked neuronal responses whereas the neuromodulatory 
systems signal the expected (un)certainty, at a slower timescale. 
As such, rather than amplifying all sensory inputs with the same 
intensity, neuromodulators essentially tune the activity of specific 
neural circuits in proportion to the weighted confidence in their 
causes. That is, neuromodulators control the gain of signals in 
the brain, thus weighting some prediction errors more strongly 
than others—essentially altering credit assignment to augment 
learning rate143.

Different arms of the neuromodulatory system are proposed to 
implement distinct aspects of models of predictive processing: 

•	 Acetylcholine is hypothesized to enhance the precision of 
bottom-up synaptic transmission in cortical hierarchies by 
optimizing the gain of supragranular pyramidal cells20.

•	 Midbrain dopamine neurons are thought to encode the 
(reward-based) prediction error signal144.

•	 Noradrenaline is hypothesized to promote both 
decision-making variability145,146 and optimal signal detec-
tion17,49,147, suggesting a trade-off between exploratory and 
exploitative behavior21,22.

•	 Serotonin has been linked to temporal discounting148, which 
relates to the modification of the gain of higher-order, hierar-
chical belief updating.
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apical dendrites of lower (that is, more granular) regions of the cere-
bral cortex (Fig. 5a), where they innervate neurons in infra- and 
supragranular layers. The latter of these contain the apical dendrites 
of the layer V pyramidal cells from the lower cortical region, along 
with interneurons and the apical dendrites of layer II/III intratel-
encephalic cells92,93. Computationally, this architecture has been 
proposed to instantiate predictive processing in the brain, with pre-
dictions carried by afferents to granular areas and resulting predic-
tion errors propagating up to superordinate regions by layer II/III 
intratelencephalic cells (Fig. 5a)81,94.

The ascending arousal system makes heterogeneous contact with 
different aspects of this cortical microcircuit, and can tune the cortex 
into distinct spatiotemporal modes of activity95. For instance, afferents 
from the thalamus47 or lower (more granular) cortical regions92,93 can 
reliably trigger cortical action potentials even from sparse spikes, and 
hence function in a relatively deterministic, feed-forward mode. The 
cholinergic system probably facilitates this feed-forward mode of pro-
cessing96, either by exciting feed-forward intratelencephalically pro-
jecting pyramidal cells97 or by recruiting the parvalbumin-staining, 
fast-spiking GABA-containing interneurons98–100 that utilize 
feed-forward inhibition101,102 to facilitate high-frequency gamma 
activity in the cortex103,104. Different classes of cholinergic receptor 
may play distinct roles in this circuit: while muscarinic-mediated 
gamma transients lead to integration within supragranular cortical 
layers, nicotinic receptors might instead mediate the potentiation of 
synaptic gain within granular layer intratelencephalically projecting 
stellate cells105, precisely on the sites of core thalamic input106.

Together, these modulations may induce divisive normaliza-
tion in the cerebral cortex107, a computational construct proposed 
to enact attentional selection in the brain108. High concentrations 
of acetylcholine sharpen the population coding of the sensory sys-
tem by increasing the excitability of a targeted subset of neurons, 
pushing them to a state of higher neural gain. This fosters the 
feed-forward propagation of high-fidelity neural activity from low 
to higher levels of the cortical hierarchies, and can be conceptu-
alized as enacting an increase in the precision of sensory inputs20  
(Box 3). This perspective is supported by known neuroanatomi-
cal principles, and agrees with electrophysiological evidence in 
human96 and nonhuman primates9.

Neuromodulation can also promote feedback processing modes 
in the cerebral cortex. As highlighted above, the presence of nor-
adrenaline can facilitate the closure of HCN channels on pyramidal 
cell apical dendrites (Fig. 3b)54, increasing the sensitivity of pyrami-
dal cells to feedback from agranular regions of the cortex55–57. This 
mechanism (that is, apical amplification of layer V pyramidal cells) 
has recently been tied to suprathreshold perceptual episodes109 and 
differentiates waking and anesthesia110, suggesting that it may be 
crucial for the mediation of perceptual awareness54,56. There is also 
evidence to suggest that psychedelic agents preferentially agonize 
5HT2A serotonergic receptors, which liberates intracellular Ca2+ 
stores (via Gq) and increases the effective gain of layer V pyrami-
dal neuron populations (Fig. 2c). This heightens the excitability 
of a wide range of cortical regions, and may underpin some of the 
consciousness-altering side effects of psychedelic pharmacological 
agents111 by amplification and distortion of otherwise weak corti-
cal signals that then combine in atypical combinations (that is, dis-
tinct from the usual patterns of feedback in the specific context). 
Furthermore, the activation of muscarinic cholinergic receptors 
selectively boosts the excitability of apical dendrites of layer V pyra-
midal cells via facilitation of Ca2+ conductance112. There are thus 
many ways in which the neuromodulatory system can modulate 
patterns of feedback processing in the cerebral cortex.

Heterogeneity within the ascending arousal system has also been 
associated with large-scale functional network topology during  
the performance of diverse cognitive tasks. Resting state functional 
connectivity is organized according to low-dimensional gradients 

(Fig. 5b), and similar (though distinct) gradients are recruited dur-
ing task performance. Interestingly, these same gradients coincide 
with the genetic expression of neuromodulatory receptor density67, 
showing how the neuromodulatory system is well placed to inte-
grate specialist regions across the brain for the performance of chal-
lenging cognitive tasks113–115 (Fig. 5c). There is evidence to suggest 
that these signatures of whole-brain coordination are sensitive to 
the noradrenergic system116. In computational work, systematic 
sharpening of neural gain function that couples independently 
oscillating neural masses heightens network-level integration14 and 
increases the influence of targeted regions over other regions15. 
Empirical work in rodents supports the predictions of these mod-
els. For example, use of designer receptors exclusively activated by 
designer drugs to stimulate the locus coeruleus in anesthetized 
rodents causes a widespread increase in corticocortical and cortico-
thalamic functional connectivity117. We envisage an important role 
for future work that refines these results by investigating the impact 
of more nuanced alterations to gain on network-level dynamics.

Conclusion
Deep learning architectures have recently achieved unprecedented 
success in solving complex tasks, at times surpassing human capa-
bilities118. In common with the cerebral cortex, deep learning algo-
rithms learn statistical regularities in the environment through 
the reweighting of ‘synaptic’ connections across a hierarchical 
structure119. Notably, deep learning approaches typically employ 
sigmoid-shaped activation functions to connect individual ‘neurons’, 
iteratively scaling these up or down according to an optimization 
function118,120. The success of deep learning and the similarities of 
their structural organization to the cortex suggest that humans and 
deep machines may share fundamental computational principles119.

Nevertheless, as reviewed here, even when abstracted to a few 
core principles, computation in hierarchical neural systems draws 
upon a highly plastic and state-dependent substrate that machines 
lack. Through the ascending neuromodulatory system, the tem-
poral receptive windows of subcircuits can be adjusted on the fly 
across a hierarchy of time scales121, and information processing can 
flexibly switch between predominantly feed-forward to feedback 
modes15. The neural activation function can be shifted, steepened 
and morphed, allowing selected regions to be tuned to possess 
higher gain and therefore respond selectively and precisely to salient 
features of the sensorium. Notably, these changes arise de novo in 
the brain—that is, as a self-organizing system. Indeed, the ascend-
ing system is not a “ghost in the machine”, but itself is tuned by 
top-down feedback according to prediction errors, anticipated 
rewards and estimated environmental volatility21,66.

Neuromodulatory systems are also key to the brain’s success as 
a nonequilibrium ‘machine’, minimizing cost by bringing energeti-
cally expensive systems online only as required122, managing and 
supplying its own power supply via homeostatic coupling123 and 
triggering explorative modes of function that anticipate future met-
abolic needs124. As a nonlinear dynamic system, the brain exhibits 
noise-driven jumps between metastable states125 and can be tuned 
under neuromodulatory control from a segregated to an integrated 
phase85. The heterogenous projection of ascending neuromodula-
tory systems to specific regions and cortical layers is key to this 
process. New breakthroughs in machine learning could benefit 
from the manner in which neuromodulation can contract or dilate 
spatiotemporal receptive windows in the brain, and selectively tune 
functional subsystems on the fly. Adopting aspects of the embodied, 
homeostatic nature of cortical systems might contribute to further 
developments in machine learning algorithms, particularly in the 
fields of autonomous robot- and human-centered computing.
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