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Highlights
The dynamic balance between segrega-
tion and integration in the brain is crucial
for cognitive function.

The ascending arousal system is ideally
placed tomodulate dynamic network to-
pology over time.

The cholinergic basal forebrain facilitates
segregation through the targeted alter-
ation of multiplicative gain.
Cognitive function relies on the dynamic cooperation of specialized regions of
the brain; however, the elements of the system responsible for coordinating
this interaction remain poorly understood. In this Opinion article I argue that
this capacity is mediated in part by competitive and cooperative dynamic inter-
actions between two prominent metabotropic neuromodulatory systems – the
cholinergic basal forebrain and the noradrenergic locus coeruleus (LC). I assert
that activity in these projection nuclei regulates the amount of segregation and
integration within the whole brain network by modulating the activity of a diverse
set of specialized regions of the brain on a timescale relevant for cognition and
attention.
The noradrenergic LC facilitates integra-
tion through the diffuse alteration of re-
sponse gain.

Coordinated activity between the cholin-
ergic and noradrenergic system sets the
balance between segregation and inte-
gration in the brain.
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Integration and Segregation in the Brain
One of the crucial unsolved questions in neuroscience is how the brain is capable of simulta-
neously facilitating both specialized and integrative processing [1]. On the surface, these capac-
ities appear to be diametrically opposed. For example, processing a specific pattern in the
environment requires specificity and computational isolation – if the pattern is not segregated
from the rest of the brain, the signal could easily become degraded and scrambled. On the
other hand, if the pattern is not integrated with contextual information related to past experience,
internal goals, and predictions [1], then there is a high likelihood that the behavioral response to
the input will not be maximally adaptive, thus limiting biological fitness. In short, the brain must co-
ordinate the interaction between segregation and integration.

Important clues for how this problem might be solved by the brain have been suggested by net-
work neuroscience, that conceptualizes the brain as a complex system of discrete interacting
parts (or nodes) and attempts to characterize the overall pattern (or topology) of the interactions
among nodes [2]. In particular, recent work suggests that the network properties of the brain that
provide the platform for cognition are quintessentially dynamic [3,4]. That is, regional brain activity
patterns are highly nonlinear, and change in crucial ways over time. Indeed, dynamics underpin
many of the capacities that make nervous systems useful for survival [5]. Among other benefits,
dynamics ensure that animals: (i) have brains that operate efficiently [6,7]; (ii) can proactively
learn (and enact) patterns from the environment [8]; (iii) remain flexible in the presence of novel in-
formation [9]; (iv) can select among many distinct patterns in the environment [10]; and (v) can
control ongoing patterns of activity [11]. Each of these capacities is definitively dynamic and
also provides crucial mechanisms for maximizing adaptive fitness. I argue here that a set of highly
conserved regions – the cholinergic basal forebrain and the noradrenergic locus coeruleus (LC) –
flexibly orchestrate system-wide dynamics at the macroscale of the brain to promote cognitive
and attentional function.

The Brain Exhibits a Complex Network Topology
Early progress in network neuroscience was made by focusing on the characteristic topology of
the ‘structural connectome’ – that comprises estimates of white matter connections between
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distributed regions around the brain [12]. By applying graph theoretical approaches to estimates
of structural connectivity between neural regions, researchers were able to demonstrate that the
white matter scaffolding of the brain is organized according to principles that strike a balance be-
tween segregation and integration (Figure 1A). For instance, the structural connections of the
brain exhibit a ‘small world’ topology [15] that is mediated by a ‘rich club’ of highly interconnected,
high-degree regions across the brain [16].

Recent work suggests that many network properties of the brain change over time as a function
of task performance [17]. For instance, the network topology of the brain has been shown to seg-
regate its functional units while subjects learn a complex motor sequence [4,18]. This process ef-
fectively partitions coalitions of effector-specific sensorimotor regions together, thus freeing up
the rest of the network for domain-general processing [4,18]. Similar reconfigurations have
been observed as a function of task complexity (Figure 1B) [3,13,19–21], such that a more inte-
grated network architecture, in which diverse specialized regions are brought together into tem-
poral alignment (i.e., more integrated; Figure 1C), is associated with cognitive performance,
although it bears mention that cognitive load can cause higher-order networks to topologically
isolate from the rest of the brain [22]. Other work has shown that arousal [23,24] and conscious
perceptual experience [25,26] are also associated with substantial reconfiguration of functional
(A)

(B) (C)
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Figure 1. Fluctuations in Network Topology. (A) Segregated networks comprise tightly interconnectedmodules that are
weakly connected with one another, whereas integrated networks have less clear modular boundaries. (B) Heightened
cognitive processing in a Latin square task was associated with more extensive intermodular reconfiguration [13]. (C) More
challenging cognitive tasks (e.g., N-back) were found to be associated with more integrated (and hence, less segregated
network topology than cognitively more simplistic motor processing [14].
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brain networks. Together, these studies not only highlight the crucial constraints imposed by net-
work topology but also raise important questions about the mechanisms responsible for imbuing
the structural connectome with the coordinated dynamics required for complex cognitive pro-
cesses [27].

Neuromodulation from the Ascending Arousal System
The neuromodulatory ascending arousal system is a prime candidate in the brain for flexibly ma-
nipulating information processing [28]. Activity within a set of wide-reaching and autonomously
pace-making nuclei in the brainstem and forebrain are able to alter the electrical composition of
the axons and dendrites of a cell without necessarily causing that neuron to fire an action potential
([29] for a review of other more direct effects of these neurochemicals). In this way,
neuromodulatory inputs can have drastic nonlinear effects on the coordinated patterns of activity
that emerge from the ‘simplest’ neuronal circuits – that is, subtle changes in the concentration of
neuromodulatory chemicals can cause massive alterations in the dynamics of the regions that
they target.

The most infamous example of this effect comes from the lobster stomatogastric ganglion, a
small knot of neural tissue in the crustacean brainstem that is known to subserve the basic re-
flexes of swallowing, chewing, and peristalsis [30]. Fascinatingly, the application of different
neuromodulatory neurotransmitters to this circuit caused a striking qualitative shift in the patterns
of activity that emerged from the circuit [30,31]. Importantly, although the anatomical connections
between each neurons ganglia remained unchanged, the functional signature of circuit activity
was fundamentally altered, indicating that neuromodulation can have distinct impacts on the
functional repertoire of neural activity. Importantly, the human brain contains many of the same
systems that are present in the lobster, however elaborate they may have become over evolution-
ary time (Box 1).

Mechanisms of Neuromodulation
The activation of neuromodulatory receptors is typically associated with an alteration of the firing
characteristics of a cell, often described in terms of a change in ‘neural gain’ (Figure 2). In other
words, the majority of neuromodulatory projections do not cause a target neuron to fire, they
only make it more (or less) likely to fire when it receives an incoming glutamatergic signal from a
connected neuron. Importantly, the changes that these neurochemicals impose on target cells
are typically relatively slow (i.e., on the order of seconds), and thus provide a modulatory influence
[32] over the signals that are conveyed by faster, ionotropic neurotransmitters, such as glutamate,
γ-amino butyric acid (GABA), and the nicotinic cholinergic system, that alter ion concentrations
more directly and act on the order of microseconds [33]. In addition, although the characteristic
timescale of the arousal system is relatively slow, it is important to note that several local factors
have the potential to fundamentally alter the local impact (and hence, timescale) of any released
neurotransmitter, such as the organization of local terminals [34,35], individual genetic differences
in the configuration of chemicals within neurotransmitter breakdown pathways [36], and the in-
herent timescale of different classes of neurotransmitter receptors [36].

Irrespective of the efficacy or specific timescale, by modulating the equilibrium between excitation
and inhibition in the network, neuromodulatory systems can exert a strong influence on cortical
dynamics. For instance, neuromodulatory circuitry plays a crucial role in controlling fluctuations
in electrophysiological ‘Up’ and ‘Down’ states in the cortex, which refer to depolarized
(i.e., active or ‘Up’) and hyperpolarized (i.e., inhibited or ‘Down’) membrane potentials, respec-
tively [33,37]. Optogenetic, pharmacological, and electrophysiological activation of ascending
neuromodulatory projections from both the noradrenergic LC [38] and the cholinergic basal fore-
brain [39] have been shown to alter patterns of oscillatory activity in the cortex: that is, they
Trends in Cognitive Sciences, Month 2019, Vol. xx, No. xx 3



Box 1. Ascending Arousal Systems

The brainstem and basal forebrain house the majority of the neuromodulatory systems of the brain [120]. Throughout the
medulla, pons, midbrain, hypothalamus, and basal forebrain lie a tangle of highly conserved nuclei that project widely to the
rest of the brain, imbuing the existing circuitry with the flexibility that is necessary to unlock a range of neural dynamic
patterns.

Although a wide range of distinct nuclei are present within the distributed neuromodulatory system of the brain, the major
regions include: (i) the cholinergic system, including the thalamic/brainstem-projecting pedunculopontine nucleus (PPN),
the hippocampus-projecting septal nuclei, and the cortico-striato-thalamic-projecting basal nucleus of Meynert (BnM);
(ii) the ascending catecholaminergic nuclei, including dopaminergic (ventral tegmental area, VTA; blue) and noradrenergic
(locus coeruleus, LC; red) regions; (iii) the serotonergic fibers of the dorsal raphe system (DR; purple); and (iv) the
orexinergic system of the lateral hypothalamus (LHyp; Figure I).

Note that many modulatory nuclei also contain neurons that project the neurotransmitters glutamate and GABA [121],
suggesting that they retain the capacity to act in a more targeted fashion over shorter timescales. In addition, each of these
nuclei has a distinct assortment of projections, which in turn is proposed to underlie their unique involvement in particular
behavioral domains. For instance, the strong cholinergic projection from the septum to the hippocampus is thought to
underlie memory encoding [122], whereas the projections from the LC to the cortex and thalamus are hypothesized to
facilitate cortical arousal [56,65].

Figure I. Major Neuromodulatory Systems of the Brain. Abbreviations: ACh, cholinergic; DA, dopaminergic; Glu,
glutamatergic; 5HT, serotonergic; NAd, noradrenergic.

TrendsTrends inin CognitiveCognitive SciencesSciences

Trends in Cognitive Sciences

4 Trends in Cognitive Sciences, Month 2019, Vol. xx, No. xx
decrease low-frequency synchronous activity in the brain (in the delta band) while simultaneously
increasing patterns of high-frequency oscillations [40–42] (often in the high gamma frequency
band), which in turn can alter the timescale on which neural regions exert their influence [43].

The neuromodulatory influence over cortical excitation is thought to arise as a result of simulta-
neous activation of multiple cell types in the cortex, including both excitatory pyramidal cells
and fast-spiking inhibitory interneurons [44]. The ‘activation’ of cortical pyramidal columns
would then, through a ‘winner-take-all’ process mediated by the thalamus [45,46], ultimately
manifest as high-frequency (i.e., high gamma) oscillations [33,45]. In addition, it has been
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Segregation Integration

Figure 2. The Balance between Integration and Segregation. The anatomy of the ascending noradrenergic system, from the basal nucleus of Meynert (blue) and
locus coeruleus (LC, red) to the cortex, defines the topological effect of increased arousal – increased acetyl choline (left) to targeted cortical sites promotes topological
segregation via increases in multiplicative gain, whereas increases in noradrenaline (right) to diffuse cortical sites promotes topological Integration via increases in response
gain (black arrows depict hypothetical targets of neuromodulator input, which are precise from the basal forebrain and diffuse from the LC; the thickness of the arrows and
color intensity depict the impact of stimulation). Importantly, the interaction between the cholinergic and noradrenergic systems could feasibly lead to an inverted U-shaped
interaction between segregation and integration (black), which can be mathematically created by simply multiplying the two linear vectors with one another.
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shown that high-frequency activity is often ‘enslaved’ by low-frequency theta oscillations [43,47],
which likely relate to ongoing activity in several ascending cholinergic nuclei [48,49]. Although a
great deal of work remains to be done to effectively clarify this mechanism in detail, these studies
support the notion that neuromodulatory systems can alter brain states [33] through the manip-
ulation of neuronal ion concentration gradients [50], a view that is reinforced by the link between
neuromodulatory tone and ongoing cortical state dynamics that define the capacity of the
perceptual system of an animal [51–55].

Although there are a host of neuromodulatory relationships in the brain, the noradrenergic [56]
and cholinergic [35,57] systems both provide substantial influence over cognitive processing
Trends in Cognitive Sciences, Month 2019, Vol. xx, No. xx 5
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([58,59] for reviews of dopaminergic and serotonergic influences over cognition, respectively).
Through actions at the microscopic level, these systems place important constraints over macro-
scopic brain function: high levels of noradrenaline are associated with exploratory behavior and
shifting between different task sets [56], whereas activation of the cholinergic system is typically
associated with attentional selection [60–62] and cognitive specificity [35,57]. Recent work at
the intersection between network science, neuroimaging, and pharmacology suggests that
these two neuromodulatory systems may place opposing restrictions on network topology. Nor-
adrenaline promotes integration, whereas acetyl choline promotes segregation. The following ex-
amines the hypothesis that interactions between these two systems provide essential constraints
over ongoing cognitive function through the modulation of the topological architecture of the
brain.

The Noradrenergic System
The majority of noradrenergic input to the central nervous system (CNS) arises from the LC, a
small nucleus in the pons that sends widespread ramifications throughout the brain [63]
(Figure 2). Optogenetic stimulation of the LC in mice has demonstrated a frequency-
dependent, causal relationship between LC firing and cortical activity associated with generalized
arousal [38]. One influential line of work suggests that this systemmay allow an organism to trade-
off between exploration – learning novel stimulus/action–outcome pairings, and exploitation –

utilizing prelearned relationships to maximize fitness [56]. These capacities are reflected by
the neuroanatomy of the noradrenergic system – projections from the LC typically cross multi-
sensory boundaries [63], which would in turn integrate (i.e., coordinate) activity between other-
wise segregated regions of the brain. Together, these studies suggest that the noradrenergic
circuitry, at least when working within its normal limits [56], promotes integrative capacities,
such as cognitive control and attention [62,64], which typically require coordinated activity
between otherwise segregated circuitry [17].

Recent work using whole-brain functional neuroimaging supports the role of noradrenaline in
network-level integration. By diffusely boosting neural gain [65] across multiple specialist subnet-
works within the brain, the concentration of noradrenaline within local circuits provides a plausible
means for controlling inter-regional connectivity, and hence integration. We recently used a com-
putational modeling framework to demonstrate that the modulation of neural gain (Figure 2) [65]
integrates the brain by transitioning the network across a critical boundary, creating synchrony
out of relative disorder [28], in turn maximizing information processing capacity [66]. Others
have used different models that modulate excitation and inhibition to demonstrate similar effects
[67], which they in turn have linked to improvements in subjective perception [68].

The noradrenergic system has been shown to work across multiple timescales. For instance, the
‘exploration’ and ‘exploitation’modes of behavior have been linked to phasic (i.e., rapid changes)
and tonic (i.e., slow changes) in the firing rate of the LC [56]. Along these lines, it has been shown
that phasic activation of the LC enabled increased firing with thalamic and forebrain regions in re-
sponse to peripheral somatosensory input [69], often with a delay of ~200–300 ms [51,54].
These modes of firing likely interact with the known heterogeneity of adrenergic receptor expres-
sion across the CNS [70,71] to imbue the structural connectome with the flexibility required to ef-
fectively process sensory inputs in concert with goal-related demands and environmental
uncertainty [72]. Indeed, different classes of metabotropic adrenergic receptors have distinct
affinities and regional distributions: at low-to-intermediate levels of LC firing, the relatively high-
affinity α2 receptor [73] increases intracellular calcium in the prefrontal cortex, which in turn pro-
motes and maintains the contents of current cognitive state and likely helps to boost the capacity
to detect signals from noise [74]; at high levels of firing, the relatively low-affinity α1 adrenergic re-
ceptor profiles should help to tune neural state activity to information from sensory cortices to
6 Trends in Cognitive Sciences, Month 2019, Vol. xx, No. xx
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facilitate a ‘network reset’ [75], and hence prime the brain towards ‘unexpected uncertainty’ [62].
Irrespective of the specificmechanisms that provoke activity in these regions, it is clear that, within
the current framework, deciphering the catalysts that shape the balance between these two sys-
tems will be a fruitful area for future research.

The Cholinergic System
The cholinergic system is typically associated with cognitive and attentional selectivity [60]. The
majority of acetylcholine in the cerebral cortex arises from the basal forebrain [76] (Figure 2).
Mechanistically, the cholinergic system is thought to facilitate ‘normalization’ in the brain [77],
sharpening neuronal activity patterns by modulating the amount of facilitation and inhibition in a
neural target, and increasing the signal-to-noise ratio in the region ([32,35] for thorough reviews).
Consistent with this normalization effect, targeted cholinergic lesions in non-human primates are
known to produce selective attentional deficits, with relative sparing of other cognitive functions
[78]. In addition, the cholinergic system has been associated with an array of cognitive functions
that rely more on signal processing specificity and selectivity, such as memory formation [79],
visuospatial perception [80], resistance to distraction [81], cue detection [82,83], and focused
attention [84]. Given the dual effects of acetyl choline on both fast-acting nicotinic and slow-
acting metabotropic receptors, it is currently unclear precisely which effects are due to either
system ([29] for extensive review).

Consistent with the promotion of segregated processing, the anatomical projections of the cho-
linergic system follow a distinct organizing principle [85–88]: the projections of the basal forebrain
target constrained regions within individual domains of sensory cortex [89], a pattern that op-
poses the inter-regional projections of the afferents from the LC (Figure 2). Specifically, related
projections from the basal forebrain typically make contact with cortical areas that are themselves
interconnected [88,90,91], suggesting that activity within the ascending cholinergic system pro-
motes a distributed, but organized, mode of information processing [92]. Thus, by selectively
boosting multiplicative gain (i.e., excitability) in a targeted region [32], and hence increasing the
signal from one particular region over other competing regions, activation of forebrain cholinergic
projections promotes a relatively segregated network topology.

The implications of these connectivity patterns on network topology have recently been borne out
by empirical neuroimaging studies, both in non-human primates [93] and humans [3,94], as well
as in computational studies [28]. For instance, it is now known that the basal forebrain is orga-
nized in a modular structure that strongly relates to the heterogeneous patterns of structural con-
nectivity observed between distant cortical regions [88]. Compellingly, silencing isolated regions
within the cholinergic forebrain leads to ‘strong, regionalized suppression’ in the local signal,
while leaving the connectivity profile of the targeted region intact [93] – as if the region has lost
a driving source, but has not altered its interaction with surrounding regions. Thus, the functional
signature of the intact cholinergic forebrain is likely to promote segregation by selectively boosting
activity within a target region, in a manner that preserves the local connectivity of that region.

Another aspect of the cholinergic system that could also promote segregated information pro-
cessing is the ability of acetylcholine to both modulate (on relatively slow timescales) [95] and di-
rectly mediate (on fast timescales) [83,96,97] activation in the CNS. The latter capacity has been
elegantly demonstrated in work that used microelectrode arrays to track subsecond fluctuations
in prefrontal acetylcholine levels [82,83]. The authors convincingly demonstrated that precisely
timed prefrontal cholinergic transients were crucial for cue detection. Based on these results,
the cholinergic system can be framed as a system that modulates information processing and to-
pological dynamics across a range of temporal scales. For instance, the slow/tonic firing modes
could help to propagate activity within segregated networks via muscarinic receptors, whereas
Trends in Cognitive Sciences, Month 2019, Vol. xx, No. xx 7
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phasic bursts that recruit nicotinergic receptors could bias network activity towards the detection
of particular salient patterns.

An Unlikely Alliance
Early neuroanatomical cartography of the brainstem characterized the arousal system as a net-
like (i.e., reticular) structure, defined by its vast interconnectivity. By implication, studying these
systems in isolation can easily lead to the false conclusion that each component of the system
is associated with a constrained and specific function. Modern neuroscience paints a different
picture in which the dynamic state of the brain is an emergent property of sensory inputs, goal
states, and interactions both within and between distinct nuclei within the ascending arousal sys-
tem that immerse the brain in a cocktail of modulatory neurochemicals [30,98].

A prime example arises from the study of the neural mechanisms that subserve sleep and wake
cycles. For instance, although the cholinergic system is active and the noradrenergic system is
quiescent during rapid eye movement sleep, both nuclei are profoundly more active during
wake than during sleep [99]. In addition, the LC sends substantial excitatory projections to the
basal forebrain [100], and hence would likely excite the cholinergic nuclei (and thus, activate its
projections) in many of the contexts that elicit its own activity. Both the cholinergic and noradren-
ergic systems are also under the influence of other nuclei in the brainstem, such as the nucleus
paragigantocellularis [101], the parabrachial nuclei [102], and the hypothalamus, including the su-
prachiasmatic nucleus [103] and paraventricular nucleus [104]. Hence, it is perhaps better to con-
ceptualize these two systems as working in concert to strike a balance between integration and
segregation (Figure 2).

By enabling the hard-wired ‘backbone’ of the brain to dynamically facilitate the neural coalitions
that are necessary to navigate an evolving affordance landscape, this pharmacological collabora-
tion may imbue the nervous system with some of its remarkable flexibility. Given that an ‘inverted
U-shaped’ curve can be estimatedmathematically by multiplying two linear functions with oppos-
ing gradients (Figure 2), it is also possible that the classical inverted U-shaped curve of the
Yerkes–Dodson law relates in part to the cooperative involvement of both the segregative capac-
ities of the cholinergic system and the integrative capacities of the noradrenergic system
(i.e., instead of simply representing concentrations of noradrenaline [56]). Of course, the local in-
stantiation of such an interaction curve would be crucially dependent on several factors, including
receptor density and the presence (or absence) of metabolic proteins, and thus is likely to be
context- and individual-specific.

Interestingly, the two systems are typically associated with opposing arms of the autonomic ner-
vous system: acetylcholine is the main effector employed by the parasympathetic system [105],
whereas noradrenaline (together with its close relative adrenaline) are the major (post-ganglionic)
effectors of the sympathetic nervous system [106]. These effects are reflected in the effects of the
two neurotransmitter systems on pupil diameter: cholinergic inputs constrict [107] whereas nor-
adrenergic inputs dilate [101] the pupil. Given the known balancing act between the two major
arms of the autonomic nervous system [108], it is entirely plausible that cholinergic and adrenergic
tone outlines a similar equilibrium process within the CNS. By shaping the channels through
which this information is percolated throughout the network, I argue that the ascending arousal
system helps to ‘bring the totality of the brains processing power to bear on the ongoing situation’
[109]. In this way, it is possible to conceptualize segregation and integration in the brain as a CNS
extension of similar established processes within the peripheral autonomic nervous system.

Based on this framework, the circuits that control and shape the flow of activity that emerges from
the noradrenergic and cholinergic systems thus take on crucial importance for understanding the
8 Trends in Cognitive Sciences, Month 2019, Vol. xx, No. xx



Outstanding Questions
Are the effects of phasic versus tonic
neuromodulatory influence on dynamic
brain state dissociable? And do they de-
pend on cognitive and behavioral
context?

How do the other neurotransmitter sys-
tems (e.g., serotonin; dopamine; hista-
mine; orexin) affect the balance
between integration and segregation?

What are the multimodal
[e.g., electroencephalography (EEG)/
fMRI] signatures of the neuromodulatory
influence on brain state?

To what extent does heterogeneity in the
neuromodulatory system (either their ac-
tivity or receptor isomorphisms) affect
cognitive function?

Can we use noninvasive brain tech-
niques (such as transcranial magnetic
stimulation or biofeedback) to control
the influence of the neuromodulatory
system on cognition?

How do specific aspects of (cortical) to-
pology interact with the ascending
neuromodulatory systems? For exam-
ple, are brain hubs more or less inner-
vated by the cholinergic/noradrenergic
projections? Are rich-club regions/con-
nections more susceptible to being
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evolution of network activity over time [110]. Perhaps the most crucial inputs arise from the het-
erogeneous regions of the frontal cortex that send direct projections to both the basal forebrain
and LC [111,112] (Figure 3). The basal forebrain receives descending projections from the
paralimbic cortex and frontal pole [88,112], regions typically associated with goal-related and af-
fective processing [113]. In highly motivating states, this descending feedback should sharpen
focus on the task at hand [114]; in more ambiguous scenarios, the conflicting descending re-
sponsesmay instead promote switching between different behavioral strategies: in states without
strong descending projections, one might predict less engagement (i.e., boredom [115]). The LC
instead receives projections from dorsolateral prefrontal cortex [116] and dorsal anterior cingulate
[56], both of which are important members of the associational architecture responsible for cog-
nitive processing and the dynamic tracking of uncertainty [72] and salience [72,117], and hence
may dynamically track mismatches between cognitive expectation and veridical input from sen-
sory systems [118]. These top-down connections – from pyramidal cells in frontal cortex to
neuromodulatory projection nuclei (Figure 3) – represent a relatively underappreciated control
mechanism in the brain, one that allows highly connected cortical hubs to amalgamate input
from diverse regions, and in turn influences their processing mode in concert with high-level cog-
nitive state dynamics.

Concluding Remarks
The noradrenergic and cholinergic systems play cooperative, but competitive, roles in the brain:
noradrenaline mediates neuronal variation (i.e., integration) and acetylcholine facilitates neuronal
selection (i.e., normalization). In this way, these two systems form the basis of a process akin
to natural selection, albeit on vastly faster timescales than those underpinning the evolution of en-
tire species. Early in the course of learning, the balance between the noradrenergic and choliner-
gic system should promote variation and selection, respectively, tuning information processing
within the brain to maximize the identification and analysis of the most relevant information for
the current goal process. As these circuits develop, Hebbian plasticity would lead to the refine-
ment of the initially selected circuits, mediated through the modulation of synaptic connections
modulated?

Does the failure of the ascending arousal
systems and their interaction predispose
towards different disease states, includ-
ing attentional deficit disorders, autism
spectrum disorders, and neurodegener-
ative diseases such as Alzheimer’s dis-
ease, Parkinson’s disease, and
dementia with Lewy bodies?

Which aspects of the ascending arousal
system provide the most important con-
straints on higher brain function? For in-
stance, do the intrinsic properties
(i.e., firing rate/pattern), afferent connec-
tions (i.e., the contexts in which they
fire), or efferent connections (i.e., the re-
gions that they can influence), or some
combination of the above, provide the
most benefit?

How do different neurotransmitter nuclei
influence the dynamic balance between
integration and segregation during cog-
nitive task performance?
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Figure 3. Cortical Top-Down Control over Neuromodulatory Activity. The recruitment of top-down frontal cortica
control over cholinergic activity (blue), from orbitofrontal (OF) cortex, and noradrenergic activity (red), from dorsolateral (DL
frontal cortex, would, via modulation of neural gain, shape the network topology of the brain. This provides a plausible
mechanism through which the brain can exert closed-loop control over its information processing dynamics as a function
of dynamic changes in context.
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between key regions. Ultimately, repetition in the circuitry mediates a process of delegation [119],
whereby the circuit is pruned away to minimize the amount of processing from input to output,
making behavior faster and less variable. In this way, the brain utilizes the unique architecture of
the neuromodulatory system to fluidly balance the opposing demands of integration and segre-
gation so as to maximize adaptive fitness.

Precisely how the noradrenergic and cholinergic circuitries interact with different
neuromodulatory systems, including the serotonergic, dopaminergic, and orexinergic systems,
to shape network topology acrossmultiple distinct temporal scales is an important open question
for future studies (see Outstanding Questions). Given their unique spatiotemporal apertures, mul-
timodal neuroimaging datasets that collect simultaneous data during cognitive performance to-
gether with the modulation of combinations of neuromodulatory chemicals will likely provide
important insights into these issues. It will also be of major interest to determine how (and
where) individual differences in neuromodulatory system architecture impact on cognitive hetero-
geneity, both in health and disease.
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