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Abstract Cognitive function relies on a dynamic, context-sensitive balance between functional
integration and segregation in the brain. Previous work has proposed that this balance is mediated
by global fluctuations in neural gain by projections from ascending neuromodulatory nuclei. To test
this hypothesis in silico, we studied the effects of neural gain on network dynamics in a model of
large-scale neuronal dynamics. We found that increases in neural gain directed the network through
an abrupt dynamical transition, leading to an integrated network topology that was maximal in
frontoparietal ‘rich club’ regions. This gain-mediated transition was also associated with increased
topological complexity, as well as increased variability in time-resolved topological structure,
further highlighting the potential computational benefits of the gain-mediated network transition.
These results support the hypothesis that neural gain modulation has the computational capacity to
mediate the balance between integration and segregation in the brain.

DOI: https://doi.org/10.7554/eLife.31130.001

Introduction

The function of complex networks such as the human brain requires a trade-off between functional
specialization and global communication (Deco et al., 2015a; Park and Friston, 2013,
Tononi et al., 1994). Contemporary models of brain function suggest that this balance is manifest
through dynamically changing patterns of correlated activity, constrained by the brains’ structural
backbone (Deco et al., 2013; Honey et al., 2007; Varela et al., 2001). This in turn allows explora-
tion of a repertoire of cortical states that balance the opposing topological properties of segrega-
tion (i.e. modular architectures with high functional specialization) and integration (i.e. inter-
connection between specialist regions [Deco et al., 2015b; Ghosh et al., 2008)).

Recent work has demonstrated that the extent of integration in the brain is important for a range
of cognitive functions, including effective task performance (Bassett et al., 2015, Shine et al.,
2016a), episodic memory retrieval (Westphal et al., 2017) and conscious awareness
(Barttfeld et al., 2015, Godwin et al., 2015). Furthermore, the topological properties of functional
brain networks have been shown to fluctuate over time (Chang and Glover, 2010; Hutchison et al.,
2013), both within individual neuroimaging sessions (Shine et al., 2016a; Zalesky et al., 2014) and
over the course of weeks to months (Shine et al., 2016b). While the extent of integration in the
brain may relate to more effective inter-regional communication, perhaps via synchronous oscillatory
activity (Fries, 2015; Lisman and Jensen, 2013; Varela et al., 2001), there are also benefits related
to a relatively segregated network architecture, including lower metabolic costs (Bullmore and
Sporns, 2012; Zalesky et al., 2014) and effective performance as a function of learning
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(Bassett et al., 2015). However, despite these insights, the biological mechanisms responsible for
driving fluctuations between integration and segregation remain unclear.

A candidate mechanism underlying flexible brain network dynamics is the global alteration in neu-
ral gain mediated by ascending neuromodulatory nuclei such as the locus coeruleus (Aston-
Jones and Cohen, 2005; Sara, 2009). This small pontine nucleus projects diffusely throughout the
brain and releases noradrenaline, a potent modulatory neurotransmitter that alters the precision and
responsivity of targeted neurons (Waterhouse et al., 1988). Alterations in this system are known to
play a crucial role in cognition, as there is evidence for a nonlinear (inverted-U shaped) relationship
between noradrenaline concentration and cognitive performance (Robbins and Arnsten, 2009;
Figure 1a).

Mechanistically, the noradrenergic system has been shown to alter neural gain (Servan-
Schreiber et al., 1990) Figure 1b), increasing the signal to noise ratio of afferent input onto regions
targeted by projections from the locus coeruleus. A crucial question is how these local changes in
neural gain influence the configuration of the brain at the network level. Recent work has linked fluc-
tuations in network topology to changes in pupil diameter (Eldar et al., 2013, Shine et al., 2016a;
Shine et al., 2018), an indirect measure of locus coeruleus activity (Joshi et al., 2016;
Murphy et al., 2014; Reimer et al., 2014, 2016), providing evidence for a link between the norad-
renergic system and network-level topology. However, despite these insights, the mechanisms
through which alterations in neural gain mediate fluctuations in global network topology are poorly
understood.

Biophysical models of large-scale neuronal activity have yielded numerous insights into the
dynamics of brain function, both during the resting state as well as in the context of task-driven brain
function (Deco et al., 2009; Honey et al., 2007); for review, see Breakspear, 2017. Whereas prior
research in this area has examined the influence of local dynamics, coupling strength, structural net-
work topology and stochastic fluctuations on functional network topology (Deco et al., 2015b;
Deco and Jirsa, 2012; Deco et al., 2017; Gollo et al., 2015, Woolrich and Stephan, 2013), the
direct influence of neural gain has not been studied. Here, we used a combination of biophysical
modeling and graph theoretical analyses (Sporns, 2013) to characterize the effect of neural gain on
emergent network topology. Based on previous work (Shine et al., 2016a; Shine et al., 2018), we
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Figure 1. Manipulating neural gain. (a) the Yerkes-Dodson relationship linking activity in the locus coeruleus
nucleus to cognitive performance; (b) neural gain is modeled by a parameter (o) that increases the maximum slope
of the transfer function between incoming and outgoing activity within a brain region; (c) excitability is modeled by
a parameter (y) that amplifies the level of output; (d) the approach presently used to estimate network topology
from the biophysical model.
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hypothesized that manipulations of neural gain would modulate the extent of integration in time-
averaged patterns of functional connectivity.

Results

To test this hypothesis, we implemented a generic 2-dimensional neuronal oscillator model (Fitz-
hugh, 1961; Stefanescu and Jirsa, 2011) within the Virtual Brain toolbox (Jirsa et al., 2010;
Sanz Leon et al., 2013) to generate regional time series that were constrained by a directed white
matter connectome derived from the CoCoMac database (Kétter, 2004) Figure 1d). The simulated
neuronal time series were passed through a Balloon-Windkessel model to simulate realistic BOLD
data. Graph theoretical analyses were then applied to time-averaged correlations of regional BOLD
data to estimate the functional topological signatures of network fluctuations (see Materials and
methods for further details).

To simulate the effect of ascending neuromodulatory effects on inter-regional dynamics, we sys-
tematically manipulated neural gain (o; Figure 1b) and excitability (y; Figure 1c). These two parame-
ters alter different aspects of a sigmoidal transfer function, which models the nonlinear relationship
between presynaptic afferent inputs and local firing rates (Freeman, 1979). When the ¢ and y
parameters are both low, fluctuations in regional activity arise mainly due to noise and local feed-
back. As the ¢ and y parameters increase, the influence of activity communicated from connected
input regions also increases, leading to non-linear cross-talk and hence, changes in global brain
topology and dynamics. Here, we investigated the topological signature of simulated BOLD time
series across a parameter space spanned by ¢ and y in order to understand the combined effect of
neural gain and excitability on global brain network dynamics.

Neural gain and excitability modulate network-level topological
integration

We simulated BOLD time series data across a range of ¢ (0-1) and y (0-1) and then subjected the
time series from our simulation to graph theoretical analyses (Rubinov and Sporns, 2010). This
allowed us to estimate the amount of integration in the time-averaged functional connectivity matrix
across the parameter space (Figure 2a). Specifically, we used the mean participation coefficient (B )
of the time-averaged connectivity matrix at each combination of ¢ and y. High values of mean Bx
suggest a relative increase in inter-modular connectivity, thus promoting the diversity of connections
between modules (Bertolero et al., 2017) and increasing the integrative signature of the network
(Shine et al., 2016a). The converse situation (i.e., segregation) can thus be indexed by low mean B
scores, or alternatively by the modularity statistic, Q. We observed a complex relationship between
o, Y and By, such that maximal integration occurred at high levels of 6 but with intermediate values
of y. Outside of this zone, the time-averaged connectome was markedly less integrated. Similar pat-
terns were observed for other topological measures of integration, such as the inverse modularity
(Q™") and global efficiency (Figure 2—figure supplement 1).

Neural gain transitions the network across a critical boundary
The relative simplicity of our local neural model allows formal quantification of the inter-regional
phase relationships that characterize the underlying neuronal dynamics. These fast neuronal phase
dynamics compliment the view given by the slow BOLD amplitude fluctuations and give insight into
their fundamental dynamic causes. We employed a phase order parameter, that quantifies the
extent to which regions within the network align their oscillatory phase — high values on this scale
reflect highly ordered synchronous oscillations across the network, whereas low values reflect a rela-
tively asynchronous system (Breakspear et al., 2010; Kuramoto, 1984).

Across the parameter space, we observed two clear states (Figure 2b): one associated with high
(p >0.5; yellow) and one with low (p <0.5; blue) mean synchrony, with a clear critical boundary
demarcating the two states (dotted white line in Figure 2a/b) that was associated with a relative
increase in the standard deviation of the order parameter (Figure 2—figure supplement 2a). This
strong demarcation between states is a known signature of critical behavior (Chialvo, 2010), which
can occur at both the regional and network level. We observed evidence for both regional and net-
work criticality in our simulation, whereby small changes in parameters (here, ¢ and v) facilitated an
abrupt transition between qualitatively distinct states. At the regional level, this pattern is observed
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Figure 2. Network Integration and Phase Synchrony. (a) mean participation as a function of 6 and v; (b) phase synchrony (p) as a function of 6 and ¥; (c)
mean participation (B,) aligned to the critical point (represented here as a dotted line) as a function of increasing o; (d) B4 aligned to the critical point
as a function of increasing y — the left and right dotted lines depicts the synchrony change at low and high v, respectively. The y-axis in (c) and (d)
represents the distance in parameter space aligned to the critical point/bifurcation for either 6 (Accg; mean across 0.2 <y <0.6) or ¥ (Aycs; mean
across 0.3 < ¢ <1.0). Lines are colored according to the state of phase synchrony on either side of the bifurcation (blue: low synchrony; yellow: high
synchrony).

DOI: https://doi.org/10.7554/eLife.31130.003

The following figure supplements are available for figure 2:

Figure supplement 1. Relationship between phase regimen boundary and alternative measures of network integration.

DOI: https://doi.org/10.7554/eLife.31130.004

Figure supplement 2. Standard deviation of the order parameter across the parameter space.

DOI: https://doi.org/10.7554/eLife.31130.005

Figure supplement 3. Transition to self-sustained oscillations in a single brain region.

DOI: https://doi.org/10.7554/eLife.31130.006

Figure supplement 4. Average time-averaged connectivity matrix in regions of the parameter space associated with high (yellow) or low (blue) ordered
phase synchrony.

DOI: https://doi.org/10.7554/eLife.31130.007

as a transition from input-driven fluctuations about a stable equilibrium to self-sustained oscillations
(Figure 2—figure supplement 3). At the network level, the combined influence of increased gain
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and structural connections manifest as a transition to high amplitude, inter-regional phase synchrony
(Figure 2—figure supplement 2b).

To further disambiguate the system-level dynamics, we studied the probability distribution of the
fluctuations in the order parameter. Close to the boundary, we observed a truncated Pareto (i.e.,
power law) scaling regime, spanning up to two orders of magnitude (Figure 2—figure supplement
2b). This pattern is consistent with a critical bifurcation within a complex system consisting of many
components (see Cocchi et al., 2017 and Heitmann and Breakspear, 2017Heitman and Break-
spear, 2017 for further discussion). After crossing the boundary, this relationship develops a ‘knee’
above the power-law scaling (Figure 2—figure supplement 2b), consistent with the emergence of a
characteristic temporal scale in a super-critical system (Roberts et al., 2015). These observations
suggest that the system undergoes a bifurcation across a critical boundary as the synchronization
manifold loses stability.

A host of contemporary neuroscientific theories hypothesize that temporal phase synchrony
between regions underlies effective communication between neural regions (Fries, 2015;
Lisman and Jensen, 2013; Varela et al., 2001), which would otherwise remain isolated if not
brought into temporal lockstep with one another. As such, we might expect that the changes in neu-
ral gain that integrate the brain might do so through the modulation of inter-regional phase syn-
chrony. Our results were consistent with this hypothesis. By aligning changes in the topological
signature of the network to the critical point delineating the two states, we were able to demon-
strate a significant increase in integration (mean Ba; T79g = 2.57; p=0.01) and decrease in segrega-
tion (Q; Ty9g = —17.44; p<0.001) of network-level BOLD fluctuations in the highly phase synchronous
state. Specifically, global integration demonstrated a sharp increase in the zone associated with the
high amplitude synchronous oscillations, particularly for intermediate values of y (Figure 2c). In con-
trast, the transitions associated with manipulating v (particularly at high values of o) led to an inverse
U-shaped relationship: the network was relatively segregated at high and low levels of v, but inte-
grated at intermediate values of v, albeit with a monotonic relationship when increasing ¢ for low
levels of y (Figure 2d). In addition, increases in between-hemisphere connectivity were more pro-
nounced than within-hemisphere connectivity in the ordered state (within: 0.010 + 0.017; between:
0.014 £ 0.013; Ty 848 = 7.104; p=10""2; see Figure 2—figure supplement 4). Together, these results
suggest that neural gain and excitability act together to traverse a transition in network dynamics,
maximizing inter-regional phase synchrony and integrating the functional connectome.

Neural gain increases topological complexity and temporal variability
Having identified a relationship between neural gain and network architecture, we next investigated
the putative topological benefit of this trade-off. A measure that characterizes the topological bal-
ance between integration and segregation is communicability (Estrada and Hatano, 2008), which
quantifies the number of short paths that can be traversed between two regions of a network
(Misic et al., 2015). In networks with high communicability, individual regions are able to interact
with a large proportion of the network through relatively short paths, which in turn may facilitate
effective communication between otherwise segregated regions. In contrast to the relationship
observed between neural gain and network integration, communicability was maximal at the critical
boundaries between synchronous and asynchronous behavior (Figure 3a-c). Thus, the topological
signature of the network was most effectively balanced between integration and segregation as the
system transitioned between disorder and order through the modulation of inter-regional synchrony
by subtle changes in neural gain.

Another important signature of complex systems is their flexibility over time. In previous work, we
showed that the ‘resting state’ is characterized by significant fluctuations in network topology, in
which the brain traverses between states that maximize either integration or segregation
(Shine et al., 2016a). This variability was diminished during a cognitively challenging task, and the
extent of integration was positively associated with improved task performance (Shine et al.,
2016a). To determine whether these alterations in topological variability may have been related to
changes in neural gain, we estimated the time-resolved mean participation coefficient (B7) of the
simulated BOLD time series and then determined whether the variability of this measure over time
changed as a function of ¢ and y. We found that the variability of time-resolved integration within
each trial was maximized across the critical boundary, as the network switched between disordered
and ordered phase synchrony (Figure 3d-f). These results support the hypothesis that changes in
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Figure 3. Topological and temporal relationships with phase regimen boundary. (a-c) network communicability was maximal following the 6 boundary
(Accp; mean across 0.2 < y <0.6) and the immediately prior to the abrupt phase transition at high vy (Aycp; mean across 0.3 < ¢ <1.0); (d-f) time-
resolved between-module participation (B7) was maximally variable with increasing 6 and across the critical boundary at high .

DOI: https://doi.org/10.7554/eLife.31130.008

neural gain may control the temporal variability of network topology as a function of behavioral
state.

Gain-mediated integration is maximal in frontoparietal hub regions

To determine whether the influence of neural gain on network dynamics was related to the underly-
ing structural connectivity of the brain, we estimated the ‘rich club’ architecture of the structural con-
nectome (Figure 4a). Compared to low-degree nodes, rich club regions demonstrated an increase
in ‘realized’ mean gain adjacent to the critical boundary (Figure 4b). In short, this means that activity
within frontoparietal ‘hub’ regions (red in Figure 4a) was more strongly affected by the interaction
between neural gain and network topology than in non-hub regions (blue/green in Figure 4a).
Indeed, this result demonstrates that the ‘realized’ gain of individual regions is not simply related to
the applied gain (i.e. input from the ascending noradrenergic system; (Aston-Jones and Cohen,
2005), but also non-linearly depends on afferent activity from topologically connected regions
(Figure 4c/d). The observed effect was particularly evident for intermediate values of vy, suggesting
that the hub regions were differentially impacted by neural gain at the critical boundary between the
asynchronous and synchronous states. Interestingly, similar dissociations were observed when com-
paring regions with high and low diversity (Figure 4—figure supplement 1), suggesting a role for
future experiments to disambiguate the importance of degree and diversity in the mediation of
global network topology (Bertolero et al., 2017). However, given the substantial overlap between
regions in the ‘rich’ and diverse’ clubs (73% of regions were found in both groups), our results con-
firm a crucial role for frontoparietal regions in the control of network-level integration as a function
of ascending neuromodulatory gain.

Discussion

We used a combination of computational modeling and graph theoretical analyses, quantifying the
relationship between ascending neuromodulation and network-level integration in order to test a
direct prediction from a previous neuroimaging study (Shine et al., 2016a). We found that
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Figure 4. Regional clustering results. (a) regions from the CoCoMac data organized according to rich club (red),
feeder (blue) or local (green) status, along with a force-directed plot of the top 10% of connections (aligned by
hemisphere), colored according to structural hub connectivity status; (b) the rich club cluster demonstrated an
increase in realized mean gain (the relative output as a function of its’ unique topology) at the bifurcation
boundary, compared to feeder and local nodes, which showed higher realized gain at high levels of 6 and ¥; (c)
the three clusters of regions also demonstrated differential responses to neural gain; and (d) excitability. The black
lines in (c) and (d) denote significant differences in B4 between the two groups.

DOI: https://doi.org/10.7554/eLife.31130.009

The following figure supplements are available for figure 4:

Figure supplement 1. Diverse Club.

DOI: https://doi.org/10.7554/eLife.31130.010

Figure supplement 2. Clustering coefficient.

DOI: https://doi.org/10.7554/eLife.31130.011

increasing neural gain transitioned network dynamics across a bifurcation from disordered to
ordered phase synchrony (Figure 2b) with a shift from a segregated to integrated neural architec-
ture (Figure 2e and Figure 2—figure supplement 1). The critical boundary between these two
states was associated with maximal communicability and temporal topological variability (Figure 3).
Finally, the effect of neural gain was felt most prominently in high-degree frontoparietal network
hubs (Figure 4 and Figure 4—figure supplement 2). Together, these results confirm our prior
hypothesis and complement an emerging view of the brain that highlights a mechanistic bridge
between ascending arousal systems and cognition (Shine et al., 2016a), providing a potential mech-
anistic explanation for the long-standing notion that noradrenergic activity demonstrates an inverted
U-shaped curve with cognitive performance (Robbins and Arnsten, 2009, Figure 1a).

The major result from our study is that network-level fluctuations between segregation and inte-
gration in functional (BOLD) networks reflect an underlying transition in synchrony of faster neuronal
oscillations, thus providing a previously unknown link between temporal scales in the brain
(Figure 2b). At low levels of y and o, the governing equations are strongly stable (damped), so that
all excursions from equilibrium must be driven by local noise - that is, regions are relatively insensi-
tive to incoming inputs (Figure 1b/c). As v and ¢ increase, local activity approaches an instability,
and consequently incoming activity is able to substantially influence activity in target regions. This
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causes changes in the emergent whole-brain dynamics evident at both the short time scale of brain
oscillations and the long time scale of BOLD correlation. A stark transition occurs at a critical point in
the parameter space (denoted by the boundary between blue and yellow in Figure 2b), whereby
small increases in ¢ lead to substantial alterations in the phase relationships between regions. Specif-
ically, the network abruptly shifts from stable equilibrium to high-amplitude synchronized oscillation,
facilitating an increase in effective communication between otherwise topologically distant regions
(Fries, 2005; Varela et al., 2001). This same transition point is associated with a peak in informa-
tional complexity (Figure 3), further suggesting the importance of criticality in maximizing the infor-
mation processing capacity of global network topology. Notably, the transition is also accompanied
by a peak in the topological variability over time: hence a dynamic instability amongst fast neuronal
oscillations yields increased network fluctuations at very slow time scales, again highlighting the cru-
cial role of criticality to multi-scale neural phenomena (Cocchi et al., 2017).

The effect of neural gain on topology was greatest in a bilateral network of high-degree fronto-
parietal cortical regions (Figure 4). This suggests that the recruitment of these hub regions at inter-
mediate levels of excitability and neural gain shifts collective network dynamics across a bifurcation,
increasing effective interactions between otherwise segregated regions. This result underlines the
effective influence of the structural ‘rich club’ (Figure 4), which in addition to providing topological
support to the structural connectome (van den Heuvel and Sporns, 2013), may also facilitate the
transition between distinct topological states. This relationship has been demonstrated previously in
other studies, either by manipulating the excitability parameter alone (Deco et al., 2017, Zamora-
Lopez et al., 2016), or through the alteration of the intrinsic dynamics of the 2d oscillator model
(Curto et al., 2009; Safaai et al., 2015), thus providing a strong conceptual link between structural
topology and emergent dynamics. Crucially, the integrated states facilitated by gain-mediated hub
recruitment have been shown to underlie effective cognitive performance (Shine et al., 2016a), epi-
sodic memory retrieval (Westphal et al., 2017) and conscious awareness (Barttfeld et al., 2015;
Godwin et al., 2015), confirming the importance of ascending neuromodulatory systems for a suite
of higher-level behavioral capacities.

Overall, our findings broadly support the predictions of the neural gain hypothesis of noradrener-
gic function (Aston-Jones and Cohen, 2005). For instance, manipulating neural gain, a plausible
instantiation of the effects of ascending noradrenergic tone in the brain (Servan-Schreiber et al.,
1990), led to marked alterations in network topology. Given the demonstrated links between net-
work topology and cognitive function (Cohen and D’Esposito, 2016; Hearne et al., 2017,
Shine et al., 2016a; Shine and Poldrack, 2017), our work thus provides a plausible mechanistic
account of the long-standing notion of a nonlinear relationship between catecholamine levels and
effective cognitive performance (Robbins and Arnsten, 2009; Shine et al., 2016a; Figure 1a). How-
ever, it bears mention that our model highlighted a relationship between neural gain, excitability
and network topology, in which there was an inverted-U shaped relationship observed between
excitability and integration that was related to two separate bifurcations (Figure 2—figure supple-
ment 2). In contrast, the effect of neural gain on topology was demonstrably more linear, particularly
at intermediate levels of y (Figure 2). Importantly, although noradrenaline has been directly linked
to alterations in gain (Servan-Schreiber et al., 1990), there is also reason to believe that noradrener-
gic tone should have a demonstrable effect on excitability (Curto et al., 2009; Safaai et al., 2015;
Stringer et al., 2016). Combined with our observation of the importance of the interaction between
neural gain and high-degree (Figure 4), diverse (Figure 4—figure supplement 1) hub regions, our
results thus represent an extension of the neural gain hypothesis that integrates the ascending
arousal system with the constraints imposed by multiple order parameters and structural network
topology.

In addition, our results also align with previous hypotheses that highlighted the importance of a.2-
adrenoreceptor mediated hub recruitment with increasing concentrations of noradrenaline, particu-
larly in the frontal cortex (Robbins and Arnsten, 2009, Sara, 2009). However, our findings are
inconsistent with the hypothesis that neural gain mediates an increase in tightly clustered patterns of
neural interactions (Eldar et al., 2013). In contrast to this prediction, our simulations showed that
measures that reflect an increase in local clustering, such as modularity and the mean clustering
coefficient (Figure 4—figure supplement 2), did not increase as a function of neural gain in the
same manner as other measures, such as the mean participation coefficient. Therefore, our results
suggest that an increase in functional integration (and hence, a concomitant decrease in local
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clustering) is a more effective indicator of the topological influence of increasing neural gain. How-
ever, it bears mention that the hypothesized relationship between clustering and neural gain was
presented in the context of a focused learning paradigm (Eldar et al., 2013), whereas our data were
not modeled in an explicit behavioral context. As such, future studies are required to disambiguate
the relative relationship between neural gain and network topology as a function of task
performance.

Prior computational studies have demonstrated a link between the structural and functional con-
nectome, with the broad repertoire of functional network dynamics bounded by structural con-
straints imposed by the white-matter backbone of the brain (Deco and Jirsa, 2012, Honey et al.,
2007, 2009). While the targeted role of gain modulation on local neuronal dynamics have been
studied (Freeman, 1979), the impact of gain on functional network organization has not been pur-
sued. Here, we have demonstrated a putative mechanism by which a known biological system
(namely, the ascending noradrenergic system) can mediate structural-functional changes, essentially
by navigating the functional connectome across a topological landscape characterized by alterations
in oscillatory synchrony. However, the direct relationship between neural gain manipulation and the
ascending noradrenergic system is likely to represent an oversimplification. Indeed, given the com-
plexity and hierarchical organization of the brain, it is almost certain that other functional systems,
such as the thalamus (Hwang et al., 2017) and fast-spiking interneurons (Stringer et al., 2016), play
significant roles in mediating neural gain and hence, the balance between integration and segrega-
tion. Further studies are required to interrogate these mechanisms more directly.

A somewhat surprising result of our simulation is the link between phase- and amplitude-related
measures of neuronal coupling. It has been known for some time that the BOLD signal is insensitive
to the relative phase of underlying neural dynamics (Foster et al., 2016), relating more closely to
changes in the local oscillator frequency and fluctuations in the relative amplitude of neural firing.
Indeed, each of the model parameters used in our experiment (i.e., gain and coupling) exerts a com-
plex influence on both the oscillator frequencies (and hence, the BOLD activity) and the global syn-
chrony (and hence, the BOLD correlations). Moreover, in coupled oscillator systems such as this, the
order parameter acts as a ‘'mean field’ that feeds back and influences local dynamics (see e.g.
Breakspear et al., 2010). Based on this knowledge, we can infer that estimates of connectivity using
BOLD time series relate to covariance in amplitude fluctuations among pairs of regions, rather than
alterations in phase synchrony. This clarification is important for modern theories of functional neuro-
science, as synchronous relationships between regions in the phase domain have been used to
explain effective communication between neural regions (Fries, 2015; Lisman and Jensen, 2013,
Siegel et al., 2009), in which the precise timing between spiking populations determines the efficacy
of information processing. Our results suggest a surprisingly robust link between these two meas-
ures, such that an integrated network with increased inter-modular amplitude correlation coincides
with a peak in ordered phase synchrony between regions. In our model, the peak of network vari-
ability occurs at the critical transition between disordered and ordered phases, where the local
dynamic states shows the most variability and where fast stochastic perturbations are most able to
influence slow amplitude fluctuations. However, while our model provides evidence linking neural
gain to functional integration, advanced models that display a broader variety of non-linear dynamics
(Breakspear, 2017) are required to test these hypotheses more directly.

Together, our results suggest that the balance between integration and segregation relates to
alterations in neural gain that exist within a ‘zone’ of maximal communicability and temporal variabil-
ity. Our findings thus highlight important constraints on contemporary models of brain function,
while also providing crucial implications for understanding effective brain function during task perfor-
mance or as a function of neurodegenerative or psychiatric disease.

Materials and methods

Dynamical network modeling

The Virtual Brain software (Sanz Leon et al., 2013) was used to simulate neural activity across a lat-
tice of parameter points in which we manipulated the inter-regional coupling between regions using
both a gain parameter and an excitability parameter. Specifically, we used a generic 2-dimensional
oscillator model (Equations 1 and 2) to create time series data that represents neural activity via
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two variables (the membrane potential and a slow recovery variable). This equation is based upon a
modal approximation (Stefanescu and Jirsa, 2008) of a population of Fitzhugh-Nagumo neurons
(Izhikevich and FitzHugh, 2006). The neuronal dynamics are given by,

Vi(t) = 20(Wi(r) + 3Vi(0)*=Vi(o) +1 ) + &(0), M

Wi(r) = 20(=Wi(r) = 10V;(1)) + (1), 2

where V; represents the local mean membrane potential and Wi represents the corresponding slow
recovery variable at node i. Stochastic fluctuations are introduced additively through the white noise
processes 7, and &;, drawn independently from Gaussian distributions with zero mean and unit vari-
ance. The synaptic current [; arise from time-delayed input from other regions modulated in strength
by the global excitability parameter y. This input arises after the mean membrane potential V in dis-
tant nodes is converted into a firing rate via a sigmoid-shaped activation function S, and then trans-
mitted with axonal time delays through the connectivity matrix. Hence the synaptic current at node i
is given by,

I,‘ = ;AU Sj (l — ‘C,‘j) (3)

where Aj is the directed connectivity matrix derived from the 76 region CoCoMac connectome (Két-
ter, 2004), and 1; is the corresponding time delay computed from the length of fiber tracts esti-
mated by diffusion spectrum imaging (Sanz Leon et al., 2013). The conversion from regional
membrane potential to firing rate is given by a sigmoid-shaped activation function,

1

1 eoVi-m” ()

Si(t)
where o is the (global) gain parameter and the sigmoid activation function is shifted to center at m.
These equations were integrated using a stochastic Heun method (Riiemelin, 1982).

The simulated neuronal data were fed through a Balloon-Windkessel model to simulate realistic
Blood Oxygen Level Dependent signals (Friston et al., 2000). The simulated BOLD time series were
band-pass filtered (0.01-0.1 Hz) and the Pearson’s correlation was then computed (and normalized
using Fisher's r-to-Z transformation).

We manipulated the inter-regional neural gain parameter ¢ and the regional excitability y through
a range of values (between 0-1). After aligning the sensitive region of the sigmoid function with its
mean input (m = 1.5). Consistent with the effects of relatively diffuse projections from the locus
coeruleus to cortex, all regions were given the same values of the 6 and y parameter for each trial.
All code is freely available at https://github.com/macshine/gain_topology (Shine, 2018). A copy is
archived at https://github.com/elifesciences-publications/gain_topology.

Integration and segregation

The Louvain modularity algorithm from the Brain Connectivity Toolbox (Rubinov and Sporns, 2010)
was used to estimate time-averaged community structure. The Louvain algorithm iteratively maxi-
mizes the modularity statistic, Q, for different community assignments until the maximum possible
score of Q has been obtained (Equation 5). The modularity estimate for a given network is therefore
a quantification of the extent to which the network may be subdivided into communities with stron-
ger within-module than between-module connections. Here, we used the Q parameter to estimate
the extent of segregation within each graph,

Q:véz‘zj(w’;76’;)8M’M’7v+iv*tzj(wiyie;)8M’M ®)
where v is the total weight of the network (sum of all negative and positive connections), wj is the
weighted and signed connection between regions i and j, e; is the strength of a connection divided
by the total weight of the network, and 8y is set to one when regions are in the same community
and 0 otherwise. '+’ and '~ superscripts denote all positive and negative connections, respectively.
Consistent with previous work (Eldar et al., 2013), the mean clustering coefficient, which reflects the
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proportion of closed ‘triangles’ in the binarized graph, was also used as a measure of segregation
(Rubinov and Sporns, 2010).

For each level of neural gain, the community assignment for each region was assessed 100 times
and a consensus partition was identified using a fine-tuning algorithm from the Brain Connectivity
Toolbox (http://www.brain-connectivity-toolbox.net/). All graph theoretical measures were calcu-
lated on weighted and signed connectivity matrices (Rubinov and Sporns, 2010), and weak connec-
tions were retained using a consistency thresholding technique that identifies weak, yet consistent
connections by identifying edges with minimal variance across multiple iterations (Roberts et al.,
2017). In order to assess global, large-scale communities, the resolution parameter was set to 1.0
(higher values tune the algorithm to detect smaller communities, which instead reflect local, rather
than global, clustering). This parameter was chosen by calculating the resolution value which maxi-
mized the Surprise (Aldecoa and Marin, 2013) between the community structure of the network at
each level of gain and resolution and a random network defined using a cumulative hypergeometric
distribution (see [Aldecoa and Marin, 2013)).

The participation coefficient, B4 (Equation 6) quantifies the extent to which a region connects
across all modules (i.e. between-module strength). As such, the mean participation coefficient can
be used to estimate the extent of integration within a graph. The participation coefficient, By;, for a

given region i is,
ny K 2
Bai=1- — 6
A ;(K) ()

where Kjs is the strength of the positive connections of region i to regions in module s, and ¥; is the
sum of strengths of all positive connections of region i. The participation coefficient of a region is
therefore close to one if its connections are uniformly distributed among all the modules and 0 if all
of its links are within its own module. Finally, the global efficiency (mean inverse characteristic path
length) and inverse modularity (Q~") were estimated for each element of the parameter space as
adjunct measures of integration.

Phase synchrony order parameter

To estimate the degree of phase synchrony at different points in the parameter space, we extracted
the raw signal (Vi) from each region in the simulation and subtracted the least squares linear trend
from each channel. We then computed the phase of the analytic signal for each channel using the
Hilbert transform and then estimated the phase synchrony order parameter (across all channels), OP,
which is given by,

1,
r= Iy )
Jj=1
where i = v/—1 and 6; represents the oscillation phase of the ™ region. Large values of p denote

phase alignment between regions (Breakspear et al., 2010; Kuramoto, 1984). The value of p for
each parameter combination was subsequently averaged over time and across sessions. By designat-
ing each parameter combination as resulting in either a synchronized (p >0.5) or unsynchronized
(p <0.5) regime, we were able to determine whether network topology changes as a function of neu-
ral gain and excitability estimated from BOLD data coincided with changes of underlying phase syn-
chrony. Specifically, we then separately grouped topological variables and within- and between-
hemisphere connectivity according to their underlying p value and then estimated an independent-
samples t-test between the two groups. The standard deviation of the order parameter, p, was also
calculated and averaged across sessions. Finally, the dwell times for regional fluctuations were esti-
mated for a number of characteristic parameter choices and analyzed for evidence of Pareto (i.e.
power law) scaling.

Communicability

The communicability, C, between a pair of nodes i and j is defined as a weighted sum of the number
of all walks connecting the pair of nodes (within weighted connectivity matrix, A) and has been
shown to be equivalent to the matrix exponent of a binarized graph, e* (Estrada and Hatano,
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2008). For ease of interpretation, we calculated the logqg-transformed mean of communicability for
each graph across iterations and values of neural gain.

= (44,
c,.,:; o (8)

Topological variability

To estimate time-resolved functional connectivity between the 76 nodal pairs, we used a recently
described statistical technique (Multiplication of Temporal Derivatives; (Shine et al., 2015); http://
github.com/macshine/coupling), which is computed by calculating the point-wise product of tempo-
ral derivative of pairwise time series (Equation 7). To reduce the contamination of high-frequency
noise in the time-resolved connectivity data, M;; was averaged over a temporal window (w = 15 time
points). Individual functional connectivity matrices were calculated within each temporal window,
thus generating an unthresholded (signed and weighted) 3D adjacency matrix (region x region x
time) for each participant. These matrices were then subjected to time-resolved topological analyses,
which allowed us to estimate the participation coefficient for each region over time (B7). We used
the mean regional standard deviation of this measure to estimate time-resolved topological variabil-
ity in the simulated data.

1 X (dty x diy)

tﬂ:_E

for each time point, t, M is defined according to Equation 1, where dt is the first temporal deriva-

9

0-(/)‘, XUdt,)

tive of the it or fh time series at time t, ¢ is the standard deviation of the temporal derivative time
series for region i or j and w is the window length of the simple moving average. This equation can
then be calculated over the course of a time series to obtain an estimate of time-resolved connectiv-
ity between pairs of regions.

Structural rich club

To test whether changes associated with neural gain were mediated by highly-interconnected high-
degree hubs, we identified a set of ‘rich club’ regions using the structural white matter connectome
from the CoCoMac database (Kétter, 2004). Briefly, the degree of each node i in the network was
determined by calculating the number of links that node i shared with k other nodes in the network.
All nodes that showed a number of connections of <k were removed from the network. For the
remaining network, the rich-club coefficient (®,) was computed as the ratio of connections present
between the remaining nodes and the total number of possible connections that would be present
when the set would be fully connected. We then normalized @, relative to a set of random networks
with similar density and connectivity distributions. When @ is greater than 1, the network can be
said to display a ‘rich club’ architecture. Individual regions that are interconnected at the value of k
at which the network demonstrates a ‘rich club’ architecture are thus designated as ‘rich club’ nodes
(n = 22). Any nodes outside of this group but still sharing a connection are labeled as ‘feeder’ nodes
(n = 44), and regions disconnected from the rich club are designated as ‘local’ nodes (n = 10). The
results were projected onto a standard surface representation of the macaque cortex (Figure 4).
After segmenting the network in this fashion, we were able to estimate the realized mean gain and
B across the parameter space for regions according to their structural topology.

Realized neural gain

While the neural gain parameter 6 controls the maximum gain in each region within the simulation
by setting the maximum slope of the sigmoid, the realized gain (mean ratio of sigmoid output to
input) for each brain region depends upon the distribution of its input, and is greater when the input
level is concentrated near the center of the sigmoid. We estimated the regional variation in effective
or ‘realized’ neural gain by calculating the integral of the instantaneous sigmoid slope over its com-
plete input range, weighted by the probability of each input level. We then compared these values
as a function of nodal class (rich club vs other nodes) at each aspect of the parameter space.
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Reliability

We ran a number of subsequent tests to ensure that any observed changes in network topology
were robust to the processing steps utilized in the analysis. Firstly, we re-analyzed data across a
range of network thresholds (1-20%) and observed robust results (i.e. r > 0.75) for Q, mean By,
mean communicability and the standard deviation of B on graphs estimated between the 9-20%
threshold range. Secondly, as the number of modules estimated from graphs can change as a func-
tion of network topology, we re-examined the topological characteristics of networks that were
matched for the number of modules (N = 4) and found no significant differences to the topological
signatures estimated on the whole group.
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