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To determine the spatiotemporal relationships among intrinsic networks of the human brain, we recruited seven neurosurgical patients
(four males and three females) who were implanted with intracranial depth electrodes. We first identified canonical resting-state net-
works at the individual subject level using an iterative matching procedure on each subject’s resting-state fMRI data. We then introduced
single electrical pulses to fMRI pre-identified nodes of the default network (DN), frontoparietal network (FPN), and salience network (SN)
while recording evoked responses in other recording sites within the same networks. We found bidirectional signal flow across the three
networks, albeit with distinct patterns of evoked responses within different time windows. We used a data-driven clustering approach to
show that stimulation of the FPN and SN evoked a rapid (�70 ms) response that was predominantly higher within the SN sites, whereas
stimulation of the DN led to sustained responses in later time windows (85–200 ms). Stimulations in the medial temporal lobe compo-
nents of the DN evoked relatively late effects (�130 ms) in other nodes of the DN, as well as FPN and SN. Our results provide temporal
information about the patterns of signal flow between intrinsic networks that provide insights into the spatiotemporal dynamics that are
likely to constrain the architecture of the brain networks supporting human cognition and behavior.
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Introduction
Recent evidence suggests that the time course of spontaneous
hemodynamic fluctuations at rest characterizes an intrinsic func-

tional network architecture in the human brain that changes
across multiple unique brain states (Buckner et al., 2013). How-
ever, neuroimaging methodologies such as fMRI are limited in
their ability to delineate the fine-grained directional and tempo-
ral relationships within and between brain networks. Given these
methodological limitations, it has remained largely unknown
whether the relationships between intrinsic networks are causally
symmetric and if the temporal patterns of signal propagation
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Significance Statement

Despite great progress in the functional neuroimaging of the human brain, we still do not know the precise set of rules that define
the patterns of temporal organization between large-scale networks of the brain. In this study, we stimulated and then recorded
electrical evoked potentials within and between three large-scale networks of the brain, the default network (DN), frontoparietal
network (FPN), and salience network (SN), in seven subjects undergoing invasive neurosurgery. Using a data-driven clustering
approach, we observed distinct temporal and directional patterns between the three networks, with FPN and SN activity predom-
inant in early windows and DN stimulation affecting the network in later windows. These results provide important temporal
information about the interactions between brain networks supporting human cognition and behavior.
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within and between networks are equivalent. Improved clarity in
this area will provide crucial insights into the functional relation-
ships between intrinsic networks of the brain and thus will inform
putative communication pathways between these networks.

We combined individual resting-state fMRI, intracranial re-
cordings, and direct electrical stimulation of the cerebral cortex
in neurosurgical subjects implanted with depth electrodes. The
measurement of cortical evoked responses to distal cortical stim-
ulation (often termed corticocortical evoked potentials; Fig. 1b)
is a well established technique in clinical neurophysiology that is
used to determine effective connections between two cortical
sites of interest (Gollo et al., 2017). Although earlier responses are
interpreted as emerging from direct synaptic connections, de-
layed and more jittered responses correlate with low-pass filter-
ing of efferent signals via multisynaptic connections or through
local circuits, thus implying connections via relatively indirect
pathways (Keller et al., 2014).

Despite the significant benefits in signal-to-noise ratio offered
by intracranial EEG recordings (Keller et al., 2014), clinical con-
siderations limit the spatial coverage of electrodes. Therefore, it
can be difficult to collect matching recording montages across
subjects, particularly given the known idiosyncrasies associated
with the functional organization of the brain (Laumann et al.,
2015). In our study, we used two factors to mitigate this potential
issue. The first involved the individualized assignment of elec-
trodes to fMRI defined resting-state networks using a novel
iterative procedure that tunes predefined network signatures
to individual differences in resting-state connectivity (Fig. 1).

Note that the spatial pattern associated with individual network
signatures demonstrates substantial heterogeneity across the sub-
jects involved in this study (Fig. 1a), which is to be expected given
the known presence of substantial differences in the resting brain
across individuals (Gordon et al., 2017). The second approach
involved the data-driven clustering of evoked time series (Fig. 2).
Briefly, we identified clusters of similar evoked activity patterns
without any prior knowledge of which networks were stimulated
and recorded from. By applying a nonparametric permutation
analysis to these data, we were then able identify the patterns of
internetwork and intranetwork connectivity that were present in
each cluster above chance (Fig. 3). Overall, the use of unsuper-
vised, data-driven analytical approaches limited these constraints
on the data and thus allowed us to infer spatiotemporal con-
straints over network-level interaction in the human brain.

Using this individualized multimodal approach, we were able
to decipher the pattern of cortical evoked responses that reflect
patterns of causal connectivity within and between three ma-
jor intrinsic networks of the human brain (Seeley et al., 2007;
Raichle, 2015): the default network (DN), which is associated
with passive states of unconstrained cognition (Buckner et al.,
2008); the cingulo-opercular “salience” network (SN), which is
associated with stimulus orienting and task switching (Uddin,
2015); and the frontoparietal network (FPN), which is associated
with cognitive control and goal-directed attention (Corbetta and
Shulman, 2002). Our results provide insights into the spatiotem-
poral dynamics that are likely to constrain the architecture of the
brain networks supporting human cognition and behavior.

Figure 1. Subject-level network coverage and evoked responses. a, Each of the three intrinsic networks studied (DN, blue; FPN, green; and SN, red) warped onto individual subject brains. Note
the substantial variance of spatial coverage and extent for each of the three networks. b, Pairs of electrodes were stimulated and evoked potentials were recorded from each other pair of electrodes.
Shown is an example of a bipolar stimulation from a depth electrode depicting the typical deviation from baseline activity (�V; y-axis) over time (ms; x-axis). Note that, due to directional ambiguity
associated with bipolar recordings, we analyzed the absolute value of power from a bipolar montage.
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Materials and Methods
Subject details. Seven subjects (39.57 � 13.8 years of age; 57% males) with
focal epilepsy were recruited in this study. Each subject underwent ste-
reotactic implantation of depth intracranial electrodes at Stanford Med-
ical Center to localize the sources of their seizures. Only depth electrodes
were used in this experiment. The location of electrode placement was
determined solely by clinical needs (Fig. 1, Table 1). All participants gave
written informed consent approved by the Stanford University Internal
Review Board before their participation.

Electrical stimulation. Single pulse stimulations were performed with a
bipolar setup in which single pulses of electrical current (4 –10 mA, bi-
phasic, 500 �s/phase) were injected between pairs of intracranial elec-
trodes using a cortical stimulator (Grass Technologies Model S12X)
while subjects were awake and resting quietly. Electrical stimulation was
delivered at 0.5 Hz (1 patient received 2 Hz stimulation), the magnitude
of which varied between patients (4 –10 mA) and was chosen so not to
induce inadvertent epileptic discharges. Each electrode contained 10 –14
contacts, through which electrical activity of the brain was recorded.
Electrodes used in this study contained contacts that were cylinder
shaped with a 0.86 –1.10 mm circumference diameter and 2.29 –2.41 mm
height. The distance between the centers of two adjacent electrode con-
tacts was 4 –5 mm. The total surface area of the electrode contacts ranged
between 1 and 15 mm 2. The direction of the dipoles recorded from the
electrode contacts was variable depending on the plane of the electrode
trajectory. Stimulations were performed with alternating polarity be-
tween the pair of stimulated electrodes; that is, the cathode and anode
changed with each delivered single pulse. Due to the variability of testing
time allowed for individual patients, the number of electrical stimulation
trials varied between participants and differed across electrode pairs
(mean: 48; range: 11–90 trials). The end result is a collection of time
series, each of which is associated with stimulation and recording from a
particular set of brain regions. Importantly, regions within white matter

or ventricular space were identified using FreeSurfer’s segmentation al-
gorithm and removed before further analysis.

Controlling for volume conduction effects. To minimize volume conduc-
tion effects, we discarded data collected from the recording sites adjacent
to the stimulated sites (i.e., on the same recording electrode shaft; n �
209 pairs).

Analysis of evoked responses. Analysis of broadband electrophysiologi-
cal data focused on evoked responses in nonstimulated electrodes. After
bipolar re-referencing, evoked responses in nonstimulated electrodes
were characterized by segmenting continuous EEG data into 225 ms
epochs (25 ms prestimulation to 200 ms poststimulation; 1000 Hz sam-
pling rate), which were time locked to the delivery of stimulation pulses
(i.e., t � 0). All electrode pairs identified as lying outside of gray matter
were discarded, as were electrode pairs on the particular electrode shaft
being stimulated in each experimental trial. Epoched data then underwent a
rejection procedure in which evoked responses exceeding �200 �V were
excluded because these epochs may be contaminated by electrical arti-
facts. Time series data were normalized to the mean and SD of the voltage
present within the 20 ms prestimulus window (t � �25 to �5) for each
individual subject, after which time the data were collated at the group
level. It should be noted that we discounted the 5 ms immediately before
each stimulation trial and 10 ms immediately after the stimulations to
ensure that peristimulus artifacts did not represent a potential confound.
Each time series was then inspected visually and data with abnormal
activity in the prestimulus window (defined as Z-score � 3) were dis-
carded. Note that, although evoked responses consisted of both positive
and negative voltage deflections, for the purposes of this study, we chose
not to differentiate between the two polarities because the direction of
activity is ambiguous in data collected from bipolar electrodes (Keller et
al., 2014). Therefore, the data were collectively considered (by taking the
absolute voltage deflection) to determine effective connectivity between
brain regions.

Figure 2. Time series clustering. a, Raw time series from all 987 stimulation-recording pairs were temporally correlated (using a Spearman’s �) across all stimulations in the seven subjects. The
987 � 987 similarity matrix was then clustered using the Louvain algorithm, which identified three distinct clusters in the data (denoted by orange, pink, and purple boxes). b, The three clusters
each demonstrated a unique temporal profile (� SE) in the evoked responses across the seven subjects. Colors match the clusters identified using the Louvain algorithm: orange, �11 to �69 ms;
pink, �82 to �125 ms; and purple, �132 to �200 ms. Colored boxes on the x-axis denote time points that were associated with significantly elevated evoked activity in each of the three temporal
clusters.
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Resting-state fMRI acquisition and preprocessing. Resting-state fMRI
data were obtained at the Center for Cognitive and Neurobiological Im-
aging and the Richard M. Lucas Center for Imaging at Stanford Univer-
sity. fMRI data for S1, S3, and S4 were acquired on a 3 T GE scanner using

a 32-channel head coil (30 slices, 4.0 mm isotropic voxels, TR � 2000 ms,
volumes � 180, FOV � 100 mm, TE � 30 ms, flip angle � 77 deg,
bandwidth � 127.68 kHz). fMRI data for S2, S5, S6, and S7 were obtained
on a 3 T GE scanner using a spiral sequence with a 32-channel head coil
(30 slices, 4.0 mm isotropic voxels, TR � 2000 ms, volumes: 240, FOV �
220 mm, TE � 30 ms, flip angle � 77 deg, bandwidth � 127.68 kHz)
(Glover and Law, 2001). Data were preprocessed using functions in the
FMRIB Software Library (FSL version 5.0.8), with standard steps includ-
ing slice-timing correction, motion correction, regression of nuisance
parameters (head motion, whole-brain signal, ventricular and white
matter time series), spatial smoothing with a 5 mm FWHM Gaussian
kernel, and high-pass filtering at 0.01 Hz. Note that data were not low-
pass filtered to enhance the signal-to-noise ratio.

Network membership assignment. To determine the network member-
ship associated with individual electrodes in individual participants,
resting-state data were projected onto cortical surfaces using FreeSurfer
and the vertices were clustered into a set of predefined networks using an
iterative cortical parcellation approach (Wang et al., 2015). Specifically, a
group-level atlas consisting of 17 networks (the “Yeo 17” atlas) was used
as the initialization of the parcellation procedure (Yeo et al., 2011).
Vertex-wise time courses were averaged across the vertices that fell within
each network, resulting in 18 reference signals. The original fMRI signal
at each vertex was then correlated to the 18 reference signals and each
vertex was reassigned to the network with the maximal correlation to the
reference signals. The ratio between the largest and the second largest
correlation values was used as a confidence signal and all vertices with a
confidence score � 1.1 were averaged and termed the “core signal.” For
each network, the core signal and the original reference signals were
averaged in a weighted manner (e.g., by multiplying the signal by the
number of iterations and the signal-to-noise ratio). The resulting signal
estimate was used as the new reference signal for the next iteration. The
process was repeated through a number of iterations and the weights
were gradually reduced over time. The procedure was stopped once net-

Figure 3. Network and regional signatures of evoked responses. a, Graphical depiction of the significant activity within each cluster. Thick arrows designate the presence of a particular connection
above chance levels. Note that the absence of a significant effect does not preclude the presence of a connection. b, Regional patterns of effective connectivity within each cluster. Arrows depict
significant effective connectivity (results of nonparametric permutation test: thick lines: p � 0.001; thin lines: p � 0.05). DLPFC, Dorsolateral prefrontal cortex.

Table 1. Network location of stimulated and recorded electrodes across all seven
subjects

Subject no.

1 2 3 4 5 6 7 Total

Age 43 41 28 25 63 50 29
Sex F M F M F M M

SN 4 (3) 3 (1) 2 (1) 9 (3) 1 (1) 1 (1) 1 (1) 21 (11)
aMCC 1 (1) — 2 (1) 2 1 (1) 1 (1) — 7 (4)
AI/fO — 1 (1) — 6 (3) — — 1 (1) 8 (5)
TPJ 3 (2) 2 — 1 — — — 6 (2)

FPN 3 (1) 20 (2) 7 (1) 30 (5) 9 (1) 7 (1) 4 (2) 80 (13)
DLPFC 1 8 (1) — 12 (2) 2 — 2 (1) 25 (4)
pACC 2 (1) 8 (1) 3 (1) 7 (2) 4 (1) — 2 (1) 26 (7)
PPC — 4 4 11 (1) 3 7 (1) — 29 (2)

DN 14 (2) 17 (2) 9 (1) 22 (2) 24 (1) 8 (2) 25 (2) 119 (12)
MTL 9 (1) 13 9 (1) 9 (1) 13 3 16 72 (3)
MFC 4 1 (1) — 12 11 (1) 1 (1) 9 (2) 38 (5)
PMC 1 (1) 3 (1) — 1 (1) — 4 (1) — 9 (4)

TOTAL 21 (6) 40 (5) 18 (3) 61 (10) 34 (3) 16 (4) 30 (5) 220 (36)

The value in each cell denotes the number of electrode pairs recorded from within each network and the number in
parentheses within each cell denotes the number of electrode pairs stimulated within each network.

AI/FO, anterior insula/frontal operculum; aMCC, anterior medial cingulate cortex; DLPFC, dorsolateral prefrontal
cortex; DN, default network; FPN, frontoparietal network; MTL, medial temporal lobe; MFC, medial frontal cortex;
PMC, posteriomedial cortex; pACC, prefrontal anterior cingulate cortex; PPC, posterior parietal cortex; SN, salience
network; TPJ, temporoparietal junction.

9670 • J. Neurosci., October 4, 2017 • 37(40):9667–9674 Shine et al. • Spatial and Temporal Network Connectivity in the Human Brain



work membership remained the same for 98% of the vertices in two
consecutive iterations. Each electrode pair was then associated with the
network identity that most closely matched its spatial location (94.6% of
the identified electrode pairs fell within the same network). DN nodes
comprised networks 10, 15, and 16 from the Yeo 17 atlas (Yeo et al.,
2011); FPN comprised networks 12 and 13; and SN comprised networks
7 and 8 (electrodes belonging to one of the other 10 networks were
discarded). Due to our interest in the networks underlying cognition and
attention, electrodes present within other resting-state networks were
discarded before the present analyses (N � 182 across seven subjects;
numbers not included in final 987 time series).

Time series similarity and clustering analysis. Poststimulus time series
were grouped according to the networks stimulated and recorded from
and grouped together independently of individual subjects. Because the
distribution of the time series was distinctly non-Gaussian (Kolmogorov–
Smirnov test: p � 0.001), we computed a Spearman’s � correlation be-
tween the poststimulus epoch (t � �11 to �200) of each of the time
series, which were each averaged across multiple (	40) stimulations of
the same electrode pair. To determine the presence of data-driven clus-
ters in our recorded intracranial EEG signals, we applied a weighted and
signed version of the Louvain algorithm to the time series similarity
matrix (Rubinov and Sporns, 2010). This procedure resulted in a clus-
tering assignment for each pair of electrodes (i.e., both stimulated and
recorded from in an individual subject). Importantly, we chose the
Spearman’s � due to its utility in comparing non-Gaussian time series
(all 987 time series were significantly non-normal using a one-sample
Kolmogorov–Smirnov test) rather than for its ability to relate to a par-
ticular neurophysiological interpretation (for which other methods
would be clearly more useful). Due to the stochastic nature of the algo-
rithm, the process was repeated 500 times and a consensus clustering was
obtained. This approach identified three distinct clusters (Q � 0.42 �
0.1), each of which was evenly distributed across the seven subjects
(F(2,18) � 0.21; p � 0.813). The clustering results were replicated using a
k-means analysis with k � 3 (mutual information [MI] � 0.853; Fig. 2a)
and also stable over a larger range of k (2–20; MI � 0.4).

Nonparametric permutation testing. To determine the network signa-
ture of each cluster, we compared the frequency of the network identity
of each stimulus-recording pair to a permutation analysis (5000 itera-
tions) and then estimated the frequency of each network pair in each
cluster. Data were initially randomized within subject before recombina-
tion at the group level to ensure that individual subject data were not
responsible for any group-level effects. Pairs more extreme than the high-
est 1% were taken to be significant (Nichols and Holmes, 2002). Impor-
tantly, this approach does not confirm the presence or absence of a
particular intranetwork or internetwork connection within an individual
cluster per se, but rather identifies the directional connections that were
present in each cluster above chance levels.

This analysis was run three separate times: the first two analyses oc-
curred at the network level, first independently of which other network
was activated and subsequently at the level of internetwork interactions.
These results are depicted in Figure 2c: intranetwork and internetwork
connections that were more prevalent in each cluster than the most ex-
treme values found in the permutation analysis are represented by thick
black arrows within and between each of the three networks. Similar
analyses were then conducted at the level of interregional interactions.
Figure 2d shows the connections between networks that were either as-
sociated with significant elevated evoked activity, however, in this case,
thick black lines represent strong interregional connections ( p � 0.001),
whereas thin black lines represent weaker connections ( p � 0.05). Non-
significant results are shown in gray.

Post hoc analyses. To confirm independently the results of the cluster-
ing analysis, we performed a series of post hoc analyses. First, we calcu-
lated the grand mean of each time series after they were organized
according to the network that was stimulated. Time series data were then
binned into the activation that occurred before the end of the first cluster
(i.e., before t � �70 ms) or after the start of the second cluster (i.e., after
t � �82 ms). This step was used in an attempt to differentiate “early”
(i.e., cluster 1) and “late” (i.e., cluster 2 and 3) activation patterns, but
care was taken to ensure that results were similar when each of the latter

clusters was analyzed separately. The mean Z-score within each bin was
then compared at the group level using a 2 � 2 ANOVA. We further
confirmed the general pattern observed in this analysis at the individual
subject level by calculating a difference score between the early and late
bins for each group of regions. Five of seven subjects demonstrated a
relationship commensurate with the group-level results. This result was
then compared with a null distribution in which we shuffled the labels of
each value 1000 times and then calculated the proportion of subjects with
similar patterns (95 th percentile of permuted data � 3/7). Our final two
post hoc analyses both used the same approach as the first post hoc analysis
except that they focused on different relationships: the first contrasted
the bidirectional relationship between DN and FPN, whereas the final
post hoc analysis compared DN activity after stimulation of either DN or
FPN/SN. Due to the nonparametric nature of the stimulated time series,
we used Mann–Whitney U tests to determine differences in activity after
stimulation in each analysis.

Euclidean distance between significant pairs of electrodes. As a final ex-
periment, we calculated the Euclidean distance between each pair of
electrodes (both stimulated and recorded from) across the cohort of
seven subjects. As a first step, we correlated the time to peak onset after
stimulation to the Euclidean distance between the stimulated and re-
corded electrode pairs using a Spearman’s � correlations within each
subject. We next investigated whether the Euclidean distance between
electrode pairs (which itself is a proxy measure of the relative distance of
propagation between two regions) differed as a function of the network
pairs that were significantly associated with activity in either the early
cluster (SN ¡ SN; FPN ¡ SN), middle cluster (SN ¡ FPN), or late
cluster (DN ¡ DN; DN ¡ SN). DN ¡ FPN connections that were
significantly present in both the middle and late cluster were discarded. A
set of nonparametric, Mann–Whitney U tests was used to compare the
Euclidean distance across the three clusters.

Data and software availability. Further information and requests for
data sharing and code may be directed to and will be fulfilled by the
corresponding author.

Results
Data-driven clustering of stimulation evoked responses
Single pulses were delivered within each of the pre-identified
nodes of the 3 networks (36 sites; 40 single square-wave biphasic
pulses in each site, one pulse every 2 s; Fig. 1, Table 2). During the
stimulations, we recorded cortico-cortico-evoked potentials in
the 250 ms window after electrical stimulation (Matsumoto et al.,
2004). In total, we recorded from 220 cortical sites across seven
subjects. Our final sample thus yielded 987 unique paired time
series, each of which corresponded to two pairs of electrodes: one
pair that was stimulated and one that was recorded from (Fig. 1,
Table 2). Across subjects, there was a positive relationship be-
tween the Euclidean distance between electrode pairs and the
time to peak onset (mean � � 0.341 � 0.14).

Our analysis revealed marked heterogeneity in temporal ac-
tivity across stimulation and recording sites (Fig. 2a,b). To pro-
vide a readily interpretable summary of these data, we performed
a clustering analysis, which clearly identified three spatiotempo-
rally distinct clusters (Fig. 2c,d); these were confirmed using
additional clustering techniques (see Materials and Methods).

Table 2. Table of pairs of electrodes stimulated and recorded from across the three
network categories

Recorded

SN FPN DN

Stimulated
SN 33 91 196
FPN 21 212 278
DN 35 105 225

DN, default network; FPN, frontoparietal network; SN, salience network.
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Visualization of the mean activity within
each cluster demonstrated three distinct
temporal patterns (Fig. 2c). The first clus-
ter (Fig. 2c,d, orange) demonstrated sig-
nificantly elevated activity within an early
window (significantly elevated activity be-
tween �11– 69 ms after stimulation),
likely the initial, feedforward, excitatory
response to stimulation (Keller et al.,
2014). The second (�82–125 ms; Fig.
2c,d, pink) and third clusters (�132–200
ms; Fig. 2c,d, purple) peaked within later
windows, likely reflecting activity that
propagated along multisynaptic pathways
(Maris and Oostenveld, 2007; Borchers et
al., 2011; Keller et al., 2014).

Network signature of
stimulation patterns
Using the clustering assignments identi-
fied in the previous step, we next used a
nonparametric permutation approach to
determine the presence of particular net-
work (Fig. 3a) and regional (Fig. 3b) pairs
that were present in each of the three clus-
ters above chance levels (p � 0.05). The
results of the permutation analysis pre-
sented a clear pattern (Fig. 3a): the first
cluster was associated with stimulation of
the FPN and SN (but not DN) that evoked
fast responses within the SN. The second
cluster was associated with a significant
number of pairs of electrodes in which
stimulation of the SN and DN evoked
activity within the frontal regions of the
FPN. The final cluster was characterized
by stimulation of regions within the DN,
which demonstrated a relatively delayed
activation of sites within the DN or frontal regions within the
FPN and SN. It should be noted that there were no significant
differences in the Euclidean distance between the network pairs
identified with each cluster (mean Euclidean distance between
stimulated and recorded pairs in cluster 1: 64.99 � 28.05; cluster
2: 62.62 � 26.79; cluster 3: 64.74 � 28.46; p � 0.500), suggesting
that the approximate synaptic distance between regions was not
an effective explanation for the heterogeneity of our results.

Each of the network-level interactions was also associated
with specific regional substrates (Fig. 3b; p � 0.001). Specifically,
the SN evoked activity identified in the first cluster (�11– 69 ms)
was predominantly driven by temporoparietal junction (TPJ)-
mediated activation of anterior medial cingulate cortex (aMCC),
along with intraregional activity within the SN. The FPN evoked
activity observed in the first cluster was observed above chance in
prefrontal anterior cingulate cortex (pACC) and posterior pari-
etal cortex (PCC), with both regions activating the aMCC, but
only the PCC activating the TPJ above chance. The second clus-
ter, which peaked between �82–125 ms, was characterized by
dorsolateral prefrontal cortex evoked activity from stimulation of
the anterior insula/frontal operculum (AI/fO) and pACC evoked
activity from stimulation of posteriomedial cortex (PMC). The
third cluster (�132–200 ms) was associated with medial temporal
lobe (MTL)-driven activation of the aMCC and PMC-mediated ac-
tivation of AI/fO and MTL. There were other patterns observed at

the regional level at lower levels of statistical significance (Fig. 3c,
thin lines).

A significant proportion of stimulated DN regions existed
within the MTL, which, although classically associated with the
DN, contains a relatively unique connectivity profile (van den
Heuvel et al., 2015). Therefore, it is possible that some of our
results may have been driven in part by factors unique to regions
within the MTL. Overall, the effect of stimulating MTL nodes was
similar to other DN regions, with the majority of significant
responses occurring in the latter two clusters from Figure 2b.
However, when decomposing the DN into MTL-related and
MTL-unrelated regions, we found that non-MTL regions were
predominantly responsible for the internetwork effects observed
in the second cluster (i.e., DN ¡ FPN), whereas both MTL and
DN regions were actively responsible for internetwork effects ob-
served in the third cluster (i.e., DN/MTL ¡ other networks).
These results suggest a relatively late effect (i.e., in the third tem-
poral cluster; �132–200 ms after stimulation) for regions in the
MTL subdivision of the DN.

Post hoc analyses
To confirm that the results of our experiment were not due to
idiosyncrasies associated with the clustering approach, we per-
formed a series of additional analyses. We first confirmed the
finding that stimulation of the FPN or SN led to higher activation

Figure 4. Internetwork differences in evoked activity. a, Time series plots of mean evoked activity associated with pairwise
stimulation of FPN and DN, colored according to the stimulated network: FPN (green) or DN (blue). The DN and FPN showed an
asymmetrical bidirectional relationship: the DN selectively activated FPN in later windows ( p � 10 �4), whereas FPN had rela-
tively little effect on DN in either window ( p � 0.2). b, Regional patterns of effective connectivity within each cluster for interac-
tions between DN and FN. Arrows depict significant effective connectivity (results of nonparametric permutation test: thick lines:
p � 0.001; thin lines: p � 0.05). DLPFC, Dorsolateral prefrontal cortex; MFC, medial frontal cortex.
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at the early window, whereas stimulation of the DN led to rela-
tively higher activations in the delayed window. In doing so, we
found that the magnitude of evoked responses across all recorded
sites was clearly maximal in the earlier (i.e., �70 ms) rather than
later windows when the FPN was stimulated, whereas DN stim-
ulation caused maximal responses in the later windows (signifi-
cant interaction effect: p � 10�4) and stimulation of the SN was
associated with a relative balance between the two windows. In
addition, we were also able to partially replicate the finding that
intranetwork stimulation amplitudes were greater than internet-
work effects (Keller et al., 2014), a pattern that held for both DN
(Z � 5.69; p � 10�8) and FPN (Z � 6.53; p � 10�11), but not SN,
where activation was more equivocal across the two categories
(Z � 0.42; p � 0.627).

To rule out the possibility that our findings were due to the
influence of idiosyncratic patterns across individual subjects, we
next looked at the presence of temporal network connectivity at
the individual level. There are a number of reasons to expect that
patterns within individual subjects may differ. First the electrode
location for each of the intrinsic networks varied slightly from
one subject to another (Table 1). Second, a relatively short resting-
state session was used to identify network location, which may
have biased toward deviations from “stable” network architec-
ture in individual subjects (Laumann et al., 2015). Finally, the
registration between MRI and CT can also be problematic given
issues associated with perisurgical edema. Despite these potential
sources of errors, we found that late responses were predominant
in the DN in all seven subjects, whereas early responses were
present within the FPN and SN in five of seven subjects (i.e.,
71%). Importantly, a permutation test demonstrated that this
value was significant greater than chance (95 th percentile of per-
mutation test � 42.9%), suggesting that the observed group-level
relationship was reasonably robust at the single-subject level.

To verify interregional patterns observed in the clustering
analysis, we confirmed that the DN activated FPN selectively in
later windows (Fig. 4a,b; Z � 3.03; p � 0.002), whereas the FPN
had relatively little effect on the DN sites in either the early or the
late window (Z � �0.91; p � 0.365). The interaction between
these two patterns was also significant (p � 10�10). Furthermore,
we showed that the DN received poststimulation activity prefer-
entially after DN stimulation compared with stimulation of ei-
ther FPN or SN. Specifically, the mean Z-score across the entire
poststimulation time series (�10 to �200 ms) in the DN after
self-stimulation (normalized amplitude � 2.36 � 0.53) was sig-
nificantly greater than the activity after FPN or SN stimulation
(normalized amplitude � 1.65 � 0.41; Z � 12.4; p � 10�35).
Together, these results confirm our data-driven approach and
highlight the asymmetrical and temporal specific patterns of con-
nectivity present across the three networks.

Discussion
Our findings reveal crucial information for understanding coor-
dinated activity between the large-scale networks of the human
brain and suggest important heterogeneity in pathways of internet-
work communication. The evoked responses between networks
demonstrated distinct temporal patterns of signal propagation (Fig.
3) because stimulation of the FPN caused higher modulations at
earlier stages of processing, whereas the DN demonstrated a
greater and sustained influence on the FPN and SN at a relatively
later stage. These findings clearly suggest that selective patterns of
putative signal propagation occur within distinct directions and
according to distinct temporal scales.

In particular, our data provide novel information that is rele-
vant to models of dynamic internetwork interactions, particu-
larly as they relate to switching between networks and the relative
temporal receptive windows that relate to optimal network func-
tionality (Honey et al., 2012). For instance, a growing body of
evidence suggests that the brain displays a temporal hierarchy
that may relate to heterogeneous patterns of interregional struc-
tural connectivity (Chaudhuri et al., 2015; Mitra and Raichle,
2016). Alternatively, the low-frequency signatures of particular
regions might interact to create qualitatively distinct patterns as
neural regions become further isolated from peripheral sensory
and motor constraints (Baria et al., 2013). On the surface, our
data appear to be consistent with both models (Stephens et al.,
2013) and further suggest that local computational capacities and
inter-areal heterogeneity within the FPN, SN, and DN regions
may explain the observed differences in the temporal scales of
effective connectivity among the three networks.

Our empirical confirmation of these models sets the stage for
testing clear hypotheses in the future: for instance, it could be
hypothesized that the DN influences the working of SN and FPN
(as well as other nodes within the DN) after they have completed
their (early) local processing, perhaps reflecting a delay in the
temporal influence of the DN that might expedite the integration
of the products of their local information processing over time
(Hasson et al., 2015). Other studies could also determine whether
these same patterns of effective connectivity are modulated by
task demands that recruit activity within each of the networks
investigated in this study. Finally, the finding that MTL-related
regions of the DN were involved in the latter clusters suggests a
potential temporal signature of memory-related processing, a
hypothesis that requires further elaboration in targeted func-
tional studies.

Overall, our study represents an important step toward map-
ping specific patterns of information flow around the brain and
thus provides a framework for studying the structure of network-
level dynamics within the brain over time. In doing so, our results
provide insights into the spatiotemporal dynamics that are likely
to constrain the architecture of the brain networks supporting
human cognition and behavior.
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