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Little is currently known about the coordination of neural activity
over longitudinal timescales and how these changes relate to
behavior. To investigate this issue, we used resting-state fMRI
data from a single individual to identify the presence of two
distinct temporal states that fluctuated over the course of 18 mo.
These temporal states were associated with distinct patterns of
time-resolved blood oxygen level dependent (BOLD) connectivity
within individual scanning sessions and also related to significant
alterations in global efficiency of brain connectivity as well as
differences in self-reported attention. These patterns were
replicated in a separate longitudinal dataset, providing addi-
tional supportive evidence for the presence of fluctuations in
functional network topology over time. Together, our results
underscore the importance of longitudinal phenotyping in
cognitive neuroscience.
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Methodological advances in cognitive neuroscience have
enabled increasingly intricate descriptions of neural dy-

namics using fMRI (1). Studies leveraging these techniques have
highlighted a set of large-scale cortical networks (2) that are
among the most flexible (3) and dynamic (4) regions in the brain
(5). Additional work in the field has shown that coordinated and
adaptable patterns of functional connectivity between these re-
gions underpin a number of higher brain functions, such as
cognition (3), learning (6), and consciousness (7). This work has
largely focused on the study of individuals at single time points,
but it is clear that there are also changes in brain connectivity
over much longer timescales of weeks to months (8, 9). Im-
portantly, it is not currently known how these long-term changes
in connectivity are related to momentary dynamic changes and
how these time-resolved patterns are related to psychological
function.
Here, we leveraged a unique longitudinal resting-state fMRI

(rfMRI) dataset (8) to determine whether fluctuations in whole-
brain connectivity were associated with alterations in the dy-
namic organization of the resting brain over the course of weeks
to months. First, we used affinity propagation to cluster the time-
averaged connectivity patterns from 84 separate rfMRI scanning
sessions, which revealed the presence of two intermittently pre-
sent “metastates” (Fig. 1). Second, we then used the multipli-
cation of temporal derivatives (MTD) (10) technique to estimate
patterns of time-resolved functional connectivity within each
session. By tracking the community structure of the brain within
10-s windows over the course of each scanning session, we were
able to estimate both global and local patterns of time-resolved
connectivity (11). To estimate time-resolved connectivity at the
areal level, we used a previously described measure of network-
level interareal dynamic connectivity—“flexibility”—which describes
the extent to which a given brain region switches frequently be-
tween distinct communities over time (12).

Results
Over the course of 18 mo, a single individual (R.A.P.; male; age
45 y old at the onset of the study) underwent 104 scanning ses-
sions, of which 84 had rfMRI data suitable for subsequent
analysis (8). Time series were extracted from a series of 630
cortical and subcortical parcels (13), which were then used to
create a 630 × 630 parcelwise time-averaged correlation matrix
for each individual scanning session (Fig. 1A). Affinity propa-
gation clustering (14) identified two major clusters (Fig. 1B),
confirming the existence of two large metastates that intermit-
tently fluctuate over longitudinal time (Fig. 1C), significantly
more frequently than would be predicted by a stationary null
model (P < 0.001). Importantly, there were no differences in
head motion [as measured by mean framewise displacements
(MFDs)] between the two states (MFD1 = 0.106 ± 0.01; MFD2 =
0.109 ± 0.12; P > 0.200).
Next, we investigated the time-resolved connectivity between

parcels within each session by calculating the pointwise product
of the temporal derivative of each time series (MTD) (10) within
a sliding window of 10 s. The MTD, which is conceptually similar
to a sliding window correlation of temporally differentiated time
series, has previously been shown to show improvements in
sensitivity to shifts in connectivity structure compared with slid-
ing window Pearson’s correlations of undifferentiated time se-
ries. The MTD is also less susceptible to known sources of
spurious connectivity, such as head motion and global mean
signal fluctuations (10). The calculation of the MTD enabled the
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estimation of a parcel × parcel × time adjacency matrix for each
of the 84 individual scanning sessions. The 3D matrix for each
session was then subjected to a multislice modularity analysis
(15), which estimates the presence of communities of brain re-
gions that extend over time. The community assignment within
each temporal window was then used to estimate the within-
(WT) and between-module (BT) connectivity for each region (SI
Materials and Methods). At the whole-brain level, the tradeoff
between WT and BT (the cartographic profile) can be tracked
over time, thus providing an estimate of temporal fluctuations in
system-wide integration and segregation (11).
At the areal level, we reasoned that regions important for

dynamic communication should show “flexible” behavior (6)—
that is, a dynamic region should communicate with a wide variety
of regions over time and hence, switch between modules fre-
quently over the course of a resting session. As an initial step, we
estimated the flexibility of each of 347 regions (333 cortical and
14 subcortical) within a single rfMRI session [repetition time
(TR) = 0.72 s; spatial resolution = 2 mm3] from 100 unrelated
individuals from the Human Connectome Project (HCP) (16).
We observed marked heterogeneity in the flexibility of neural
regions in the resting state, with regions within default and sa-
lience network, along with a number of subcortical regions,
showing the most flexible behavior during rest. In contrast, re-
gions within the frontoparietal network showed the most stable
behavior during rest (Fig. 2B). We also observed similar patterns
of flexibility across 84 sessions from the individual subject and a
similar longitudinal dataset from a single individual (“Kirby”)
(Fig. 2C) (8) as well as in data from 100 unrelated individuals
from the HCP Consortium (spatial correlation between mean
regional flexibility from 100 subjects in HCP and mean flexibility
across 84 sessions in the MyConnectome Project: r = 0.440) (Fig.
2A), suggesting that the flexibility of brain regions over time is
relatively stable across subjects and datasets.
We were next interested in determining whether the two

temporal metastates showed unique dynamic signatures within
the individual resting-state sessions. Indeed, the two metastates
were associated with distinct patterns of time-resolved connectiv-
ity, with metastate 2 highlighted by markedly increased flexibility
in the visual, somatomotor, frontoparietal, and cingulo-opercular

networks (Fig. 3A) [false discovery rate (FDR) α = 0.05]. These
differences (in all but six parcels: left insula, bilateral superior
frontal gyrus, and bilateral temporal pole) were significantly
greater than the 95th percentile of a null distribution populated
by results obtained from a phase randomized dataset (17), which
scrambles dynamic interrelationships in the data. In addition,
although there were similar patterns of modularity in both states
(i.e., the extent to which the network was partitioned into tight
knit communities; Q1 = 0.609 ± 0.07; Q2 = 0.600 ± 0.08; P =
0.240), we observed higher global efficiency (i.e., the ease with
which a pair of regions within the largest connected component
of the network can communicate; E1 = 0.308 ± 0.02; E2 = 0.319
± 0.02; P = 0.002; greater than 95th percentile of phase-
randomized null distribution) (Fig. 3C) and systems-level in-
tegration (i.e., the extent to which the community structure of
the brain was dissolved; greater than 95th percentile of phase-
randomized null distribution) (Fig. 3B) in metastate 2. Together,
these results show that the dynamic interplay between fronto-
parietal and sensorimotor regions is related to differences in the
capacity of the whole brain to alter its information processing
capacity over longitudinal time.
Given that behavioral capacities, such as attention and alert-

ness, are known to fluctuate over time, we next investigated
whether fluctuations in time-resolved connectivity were related
to fluctuations in psychological function. To do so, we identified
questions from the self-reported Positive and Negative Affect
Schedule (18) that were significantly different when collected on
days associated with scanning sessions that were later identified
as occupying either of the metastates. This analysis revealed a
differential relationship (Mann–Whitney u test; FDR P < 0.05)
between the behavior associated with one of two states, with the
less flexible state (metastate 1) corresponding to questions as-
sociated with fatigue (drowsy: Q28; sleepy: Q57; sluggish: Q58; and
tired: Q62) and the state with more flexible interareal dynamics
(metastate 2) associated with heightened attention (attentive:
Q11; concentrating: Q18; and lively: Q43). Interestingly, the four
“fatigue”-related questions were also found to be significantly
different when comparing sessions acquired with or without
caffeine/food, a factor that was manipulated in the study (8) (all
P < 0.002). However, caffeine and food were not associated with
any of the questions tracking self-reported attention and were
similarly not associated with the presence of either metastate (all
P > 0.200) (8). As such, this finding suggests that the fluctuations
in flexibility were not simply related to drowsiness within the
scanner; however, definitive resolution of this issue would re-
quire simultaneous EEG/fMRI data to track the electrophysio-
logical signatures of sleep architecture (19, 20).

A B

C

Fig. 1. (A) Graphical depiction of the experiment—time series from 630
cortical and subcortical parcels in 84 separate sessions were submitted to
time-averaged connectivity analysis. Affinity propagation was then used to
cluster the similarity of each session’s time-averaged connectivity. Sepa-
rately, the time series from each session were subjected to a time-resolved
functional connectivity analysis, and then, a multislice community detection
algorithm was used to track the modular structure of the brain over time.
(B) Spatial similarity of parcelwise resting-state functional connectivity ma-
trices for each session over time [the cluster identity of each session is rep-
resented as either red (metastate 1) or blue (metastate 2) in the vector
alongside the adjacency matrix]—there were two temporal metastates
identified at the group level using affinity propagation clustering of the
similarity between time-averaged connectivity matrices (metastate identity
shown alongside adjacency matrix). (C) A timeline showing the relative oc-
currence of each session colored according to its metastate. A similar pattern
was observed in the replication dataset (Fig. 4E).

A B C

Fig. 2. The flexibility (percentage of time “switching” between unique
modules) of brain regions across (A) 100 unrelated subjects from the HCP,
(B) 84 sessions from the MyConnectome Project dataset (MyConn), and (C) 152
sessions from the Kirby dataset.
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To ensure that the results that we observed were not reflective
of idiosyncratic patterns within the MyConnectome Project
dataset (e.g., the patterns related to caffeine and food intake)
(8), we replicated our analysis in a separate longitudinal dataset
of a single individual (www.nitrc.org/projects/kirbyweekly). Briefly,
this dataset included 158 sessions collected over 4.5 y in a single
individual (male; 40 y old) using a scanning protocol with lower
spatial and temporal resolution (TR = 2 s; spatial resolution =
3 mm3). After preprocessing, 138 scanning sessions from this
dataset passed quality assessment and were subjected to our
analysis. In addition, all data were minimally “scrubbed” to
remove the potential effect of head motion on connectivity
measures (21, 22), however the results were independent of this
preprocessing step. We found similar fluctuations in connectivity
(Fig. 4), with two metastates fluctuating intermittently over the
period of the study (Rep1 = 44.9%; Rep2 = 55.1%) (Fig. 4E).
Consistent with the findings in the discovery cohort, the two
metastates were associated with similar differences in flexibility
(r = 0.360) (Figs. 4B and 5), cartography (r = 0.536) (Fig. 4C),
and network topology [i.e., different global efficiency (RepE1 =
0.283 ± 0.05; RepE2 = 0.329 ± 0.04; P = 0.002) but similar
modularity (RepQ1 = 0.545 ± 0.03; RepQ2 = 0.539 ± 0.02; P =
0.312) (Fig. 4D)]. No psychological data were available for this
dataset (9), and therefore, the behavioral analyses could not be
replicated. Despite this idiosyncracy, the results of the replica-
tion analysis provide confirmatory evidence for the presence of
metastates over the course of weeks to months.

Discussion
Here, we showed that fluctuations in rfMRI functional connec-
tivity over the course of weeks to months in a single individual
are related to specific patterns of time-resolved connectivity,
network topology, and self-reported attention. By tracking large-
scale descriptions of functional connectivity over a period greater
than 1 y, we identified the presence of two longitudinal meta-
states that fluctuated over time (Fig. 1 B and C). These meta-
states were characterized by separable patterns of time-resolved
connectivity at both the global and areal levels. Specifically, we
observed quantitative differences in the regions that showed
flexible behavior over time, sharing community structure with
many regions, while also regularly switching modular assign-
ments (Fig. 3). These findings were replicated across two sepa-
rate individuals (both with unique scanning protocols), providing
some degree of support for their generalizability. However, de-
spite the relatively similar patterns of flexibility associated with

each of two metastates (spatial correlation betweenMyConnectome
Project and Kirby datasets: r = 0.360) (Fig. 5), we did observe
some qualitative differences between the two datasets (Figs. 3A
and 4B) that may relate to individual differences in dynamic
brain composition over time.
There is growing evidence that functional connectivity fluc-

tuates over relatively short timescales (i.e., on the order of 0.1–
0.01 Hz) (23–25), and as such, it is perhaps unsurprising that
similar dynamic patterns exist over longer periods of time. In-
deed, it has been hypothesized that such fluctuations in topology
are an essential emergent feature of the complex network or-
ganization of the brain (26). Evidence for these fluctuations has
been shown using computational modeling approaches (27) as
well as electrophysiology (28) and more recently, fMRI (11). In
addition, other recent work has also shown that alterations in
brain network topology track with task performance (29, 30)
along with individual differences in intelligence (31) and atten-
tional capacity (32). Together, these findings provide evidence
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Fig. 3. (A) Significant differences in patterns of flexibility between the two
temporal metastates (FDR P < 0.05)—metastate 2 (blue) was associated with
higher flexibility than metastate 1 (yellow/red). (B) Differences in the car-
tographic profile between metastate 1 (yellow/red) and metastate 2 (blue)—
metastate 2 was associated with a shift toward higher integration (FDR P <
0.05). (C) Metastate 2 was associated with greater global efficiency than
metastate 1 (P = 0.002). ***P < 0.01.
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E

Fig. 4. (A) We identified two temporal metastates using affinity propaga-
tion clustering (replication metastate identity shown alongside adjacency
matrix). (B) Significant differences in patterns of flexibility between the two
temporal metastates (FDR P < 0.01): blue, significantly higher time-resolved
connectivity in replication metastate 2; red, significantly higher time-
resolved connectivity in replication metastate 1. (C) Differences in the carto-
graphic profile between replication metastate 1 (yellow/red) and replication
metastate 2 (blue)—replication metastate 2 was associated with a shift toward
higher integration (FDR P < 0.05). (D) Replication metastate 2 was associated
with greater global efficiency than replication metastate 1 (P = 0.001). ***P <
0.01. (E) A timeline showing the relative occurrence of each session colored
according to its metastate.

A B

Fig. 5. (A) Difference in flexibility across the two metastates in both the
Kirby (y axis) and MyConnectome Project (x axis) datasets (r = 0.360).
(B) Similarity of network-level flexibility in both the Kirby (red) and
MyConnectome Project (MyConn; blue) datasets—values represent the per-
centages of significantly different flexibility values that occurred within each
of 15 predefined networks (only those with >0 significant regions shown).
CON, cingulo-opercular network; DMN, default mode network; FPN, fron-
toparietal network; SC, subcortical; SM, somatomotor; VAN, ventral atten-
tion network; VIS, visual.
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for detailed temporal organizational structure within the func-
tional connectome.
An important question facing the field is whether the temporal

fluctuations observed in this study vary as a function of neuro-
logical and psychiatric disease. Given that impairments in at-
tention are common in neuropsychiatric disorders (33, 34) and
that the symptomatology of these conditions often fluctuates
over time, it is reasonable to predict that the dynamic interre-
lationships between large-scale brain systems over longitudinal
time might also become impaired in turn. To this end, others
have used a similar approach to the one devised in this study to
show that dynamic patterns of brain connectivity track with
changes in positive mood (35). If this result can be shown to be
the case in psychiatric and neurological disorders, the methods
described here will have important implications for tracking
disease states over time through either the prediction of symp-
tom onset or the response of individual subjects to treatment. In
addition, the results will also have an influence on the inter-
pretation of comparisons between clinical groups, wherein
differences in network configurations between cohorts may, in
fact, reflect differences in temporal dynamics rather than purely
spatial pathology per se. Although the path toward solving these
issues is currently opaque, it is nonetheless important for studies

interrogating brain network abnormalities in cohort studies to
broaden their hypothetical lens to include alternative interpre-
tations of significant differences between diseased cohorts.
In conclusion, we have identified a network of cortical and

subcortical regions that participate in flexible behavior and alter
their time-resolved connectivity profile over longitudinal time,
leading to changes in global information processing capacity that
track with alterations in self-reported attention. Together, these
results support the hypothesis that fluctuations in dynamic inter-
connectivity between neural regions define the functional capac-
ities of the human brain (6, 36) and also, have important
implications for the study of neuropsychiatric disorders that
display fluctuations in phenotypic expression of psychological
and neurological characteristics over time (8).

Materials and Methods
Institutional Review Board approval for this study was deemed unnecessary
by the University of Texas Office of Research Support.
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Data and Code Sharing. All data described here are shared openly
at myconnectome.org/wp/data-sharing. Code for all analyses is
freely available at https://github.com/macshine/metaconnectivity.

Data Acquisition. Functional connectivity was calculated using
preprocessed high-resolution resting-state data acquired in 84
unique sessions over the course of 18 mo in a single individual
(12). For each session, 10 min of resting-state data were acquired
using multiband sequence gradient echo planar image (multiband
factor = 8; echo spacing = 0.58 ms; band width = 2,290 Hertz per
pixels). The following parameters were used during data acqui-
sition: relaxation time, 1,160 s [echo time (TE) = 30 ms], dis-
tance factor = 20%, flip angle was 63° (the Ernst angle for gray
matter), field of view was 208 × 180 mm (matrix = 96 × 96), and
2.4 × 2.4 × 2.0-mm voxels with 64 slices.

Data Preprocessing.All fMRI data were preprocessed according to
a pipeline developed at Washington University (37). First, the
initial 100 time points were discarded from the data because of
the presence of an evoked auditory signal within theMRI scanner.
Data were realigned to correct for headmotion and normalized to
a mode of 1,000. Each session was registered to a single session
that had previously been registered to the mean T1-weighted
structural image and atlas. The session to atlas transform was
inverted and applied to the mean field map so that the distortion
correction could be applied in each session’s space. The un-
distorted data were then reregistered to the atlas space. The
transforms for head motion correction and affine registration to
atlas space were combined with the field map-based distortion
correction to resample the data from the original session space
to the undistorted 3-mm isotropic atlas space in a single step
using FSLs applywarp tool.
Artifacts were reduced using frame censoring, regression, and

spectral filtering. Frames with framewise displacement >0.25 mm
were censored as well as uncensored segments of data lasting less
than five contiguous volumes (97.1 ± 4% of frames were kept).
Nuisance regressors included whole brain, white matter, and
ventricular signals and their derivatives in addition to 24 move-
ment regressors derived by Volterra expansion. Interpolation
over censored frames was computed by least squares spectral
estimation so that continuous data could be band pass-filtered
(0.01–0.1 Hz); 12 of 104 sessions were discarded after an alter-
ation to the scanning protocol, and 8 were discarded because of
poor normalization.

Parcellation Scheme.After preprocessing, the mean time series was
extracted from 630 predefined regions of interest (ROIs): 616
cortical parcels (309 from the left hemisphere and 307 from the
right hemisphere) from a predefined cortical parcellation scheme
(12, 13) that was based on the principles of the Gordon atlas (37)
but used all 84 sessions of the individuals’ data to create a more
subject-specific parcellation scheme along with 14 subcortical
parcels from the Harvard–Oxford subcortical atlas (fsl.fmrib.ox.
ac.uk/fsl/fslwiki/).

Session-Specific Resting-State Functional Connectivity. Using the
time series extracted in the previous step, we created a parcel by
parcel correlation matrix for each session by calculating a
Pearson’s correlation between each parcel’s time series and then,
performing a Fisher’s r to Z transformation. We then compared
these 84 “session” matrices with one another using spatial

Pearson’s correlations, leading to the creation of an 84 × 84
matrix that represented the spatial similarity of the correlation
matrix for each pair of scanning sessions (Fig. 1A).

Estimation of Temporal Metastates. We used the affinity propa-
gation technique (14) on the cross-session similarity matrix (Fig.
1A) to cluster similar patterns of functional connectivity over
time. Briefly, affinity propagation iterates through a similarity
matrix and exchanges real-valued “messages” between data
points until a high-quality set of exemplars and corresponding
clusters emerges. Each scanning session could then be assigned
to one of a set of metastates according to the identity of the
session with which it was best exemplified. Importantly, this
technique does not require the predefinition of the number of
clusters, such as is the case with k-means clustering and other
clustering methods (14); however, there is a relationship between
the number of clusters found and the “preference” for when the
algorithm should cease “passing messages” between regions.
Using this technique with no initial preference toward specific
exemplar sessions and the minimum similarity as a constraint on
the clustering results (which biases toward the discovery of a
small number of clusters), we discovered two clusters of spatially
similar matrices in time (Fig. 1B)—hereafter referred to as
metastate 1 [MS1: 47 sessions; exemplar session 44 (shown in red
in Fig. 1B)] and metastate 2 [MS2: 37 sessions; exemplar session
83) (shown in blue in Fig. 1B)]. We later compared this partition
with the results of a clustering based on dynamics (SI Materials
and Methods, Estimating the Dynamic Flexibility of Each Brain
Region) and saw broadly similar results.
To ensure that the differences in interareal connectivity were

not driven by systematic differences in headmotion, we compared
the MFD (21) from each session in each metastate using an
independent sample t test. In addition, we also compared re-
gional flexibility with the SD of each region’s time series and
found no significant relationship (mean r = 0.132; P = 0.231),
suggesting that regional flexibility was not simply a function of
temporal noise. Finally, we also compared modular “switches”
(defined as TR to TR mutual information of <0.2) with MFD
across 84 sessions and found no significant relationship (mean
r = 0.015; P > 0.500). Together, these results suggest that head
motion did not adversely affect the interpretations in our
manuscript.

Estimation of Time-Resolved Connectivity. To estimate functional
connectivity between 630 ROIs, we used the MTD technique
(Eq. S1) (https://github.com/macshine/coupling/) (10). The MTD
metric is estimated by calculating the pointwise product of
temporal derivative of each pair of regions’ time series (38). The
MTD tracks similar changes over time, such that a positive value
represents “coupling” of time series in the same direction (that
is, either both increasing or both decreasing together), whereas
negative scores reflect “anticoupling” (that is, one increasing
while the other is decreasing). To avoid the contamination of
high-frequency noise in the time-resolved connectivity data, the
MTD is averaged over a temporal window, w:

MTDijt =
1
w

Xt+w
t

�
dtit × dtjt

�
�
σdti ×σdtj

� [S1]

Eq. S1 shows MTD. For each time point, t, the MTD for the
pairwise interaction between regions i and j is defined according
to Eq. S1, where dt is the first temporal derivative of the ith or jth
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time series, σ is the SD of the temporal derivative time series for
region i or j, and w is the window length of the simple moving
average. This equation can then be calculated over the course of
a time series to obtain an estimate of time-resolved connectivity
between pairs of regions.
Previous work based on simulated blood oxygen level de-

pendent (BOLD) data has shown that a window length of seven
TRs provides optimal sensitivity and specificity for detecting
dynamic changes in functional connectivity structure when using
the MTD technique (10). Given that we used a 0.1-Hz low-pass
filter on our data, in theory, all signals with periods of 10 s or
smaller should be removed from the data. As such, we opted to
use a temporal window of 10 time points to calculate a simple
moving average of the MTD. The MTD can then be tracked over
time to provide an estimate of time-resolved functional con-
nectivity, because within each window, the value of the MTD is
directly interpretable as the extent to which two regions showed
similar changes in activity over time. Using the MTD value, we
were, thus, able to compute a weighted and signed adjacency
matrix within each temporal window.

Time-Resolved Community Structure. To determine the presence of
community structure that existed over the temporal domain,
we used a version of the Louvain algorithm (Eq. S2) to track
community structure over time during each resting-state session
(39). Briefly, the Louvain algorithm iteratively maximizes the
modularity statistic, Q, for different community assignments
until the maximum possible score of Q has been obtained. The
modularity estimate for a given network is, therefore, a quanti-
fication of the extent to which the network may be subdivided
into communities with stronger within- than between-module
connections. This algorithm optimized the modularity quality
function, Q, by identifying community structure in networks that
are “linked” together in time. In line with previous work (6), the
γ- and ω-parameters, which index the expected size of commu-
nities and the strength of links between modules in time, re-
spectively, were each set to one. In keeping with previous studies,
we reanalyzed our data across a range of γ- and ω-parameter
spaces (0.9–1.1 in steps of 0.05) and found robustly similar
module structure (mean mutual information across sessions:
0.739 ± 0.18 across the parameter space). Finally, because of the
stochastic nature of the modularity maximization algorithm, we
estimated the community structure of the data 100 times for each
session and then, estimated a consensus clustering for each
temporal window:

Q=
1
2μ

X
ijlr

��
Aijl − γlNijl

�
γlr + δijωjlr

�
δ
�
Mil,Mjr

�
[S2]

Eq. S2 shows the multiscale, multiscale modularity algorithm
(10), where Aij is the adjacency matrix, Nijl represents the New-
man–Girvan null model (2), γl is the structural resolution param-
eter of layer l, the parameter-ωjlr is the “interlayer coupling
parameter” between node j in layer r and node j in layer l, and
δMilMjr is set to one when regions are in the same community and
zero otherwise. In keeping with previous works (2, 16), we set
ω = 1 and γ = 1.

Estimating the Dynamic Flexibility of Each Brain Region. In keeping
with the work by Bassett et al. (40), we estimated the flexibility of
each brain parcel by calculating the percentage of temporal
windows in which an individual region “switched” between
modules normalized to the total number of modules in the data
(as estimated in the previous step). Accordingly, regions with
high flexibility sampled from a wider range of the total brain than
those with low flexibility, which were more regularly present in a
temporal community with a smaller proportion of the total brain.

Code was obtained directly from the original author (www.
danisbassett.com/resources.html). To assess this measure across a
large dataset, we first calculated the flexibility of each of 333
cortical and 14 subcortical parcels in an independent cohort of 100
unrelated subjects from the HCP dataset (16). Because of a
shorter repetition time (TR = 0.72 s), a sliding window of 14 was
used to calculate the simple moving average of the MTD. The
two estimates of flexibility during rest showed moderate spatial
correspondence (r = 0.440).
To test for significance between the identified metastates, the

flexibility of each region was compared between the two meta-
states using an independent samples t test with a false discovery
rate of α = 0.05 applied to provide control over multiple com-
parisons. The spatial projection was then mapped onto a 32,492-
vertex surface rendering using the Connectome Workbench
(www.humanconnectome.org/).

Cartographic Profiling. Based on time-resolved community as-
signments, we estimated within-module connectivity by calcu-
lating the time-resolved module-degree Z score (WT; within-
module strength) for each region in our analysis (Eq. S3) (41):

WiT =
κiT − κsiT
σκsiT

[S3]

Eq. S3 shows the module-degree Z score, WiT, where κiT is the
strength of the connections of region i to other regions in its
module si at time T, κsiT is the average of κ over all of the regions
in si at time T, and σκsiT is the SD of κ in si at time T.
The participation coefficient, BT, quantifies the extent to

which a region connects across all modules (i.e., between-module
strength) and has previously been used to characterize hubs
within brain networks (42, 43). The BT for each region was cal-
culated within each temporal window using Eq. S4:

BiT = 1−
X
s=1

�
κisT
κiT

�2

[S4]

Eq. S4 shows participation coefficient BiT, where κisT is the
strength of the positive connections of region i to regions in
module s at time T, and κiT is the sum of strengths of all positive
connections of region i at time T. The participation coefficient of
a region is, therefore, close to one if its connections are uni-
formly distributed among all of the modules and zero if all of
its links are within its own module.
Using these two values for each region within each temporal

window, we were able to estimate the cartographic profile for the
entire brain over time. Specifically, we created a joint histogram
of each temporal window (which is naïve to cartographic
boundaries) by summing the instances of each value of WT and
BT within 100 equally defined bins along each axis. To compare
the cartographic profile of the two metastates, we compared the
intensity within each bin of the joint histogram between the two
metastates using an independent samples t test (FDR P < 0.05).

Efficiency of Communication Within Metastates. To determine the
mean global efficiency of each metastate, the time-averaged
connectivity matrix for each session was thresholded to retain the
top 5% of positive connections (although results were consistent
across a range of thresholds: 1 to 20%). We then calculated the
global efficiency of the network (E) using Eq. S5. Importantly,
the efficiency was calculated on the largest connected compo-
nent in the data, ignoring nodes that were “isolated” from the
rest of the graph. The largest component in the data after
thresholding the top 5% of the data contained 93.54 ± 0.02%
of 630 regions on average, suggesting that the presence of iso-
lated nodes was relatively rare (6.46 ± 0.02% on average).
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These values were compared between metastates using two
independent samples t tests (an FDR of α = 0.01 was used for
the local efficiency results):

E=
2

nðn= 1Þ
Xn
i<j∈G

1
dði, jÞ [S5]

Eq. S5 shows global efficiency of a network, where n denotes the
total nodes in the largest connected component, and d(i,j) de-
notes the shortest path between node i and neighboring node j.

Relationship to Self-Reported Behavior. To determine whether the
states identified in the neuroimaging sessions were related to
behavior, results from the self-reported Positive and Negative
Affect Schedule (18) questionnaires were compared between the
two sessions using a series of Mann–Whitney u tests (FDR α =
0.01). Scores from the significant questions fell into two related
groups: one associated with a higher frequency of response in
metastate 1 (fatigue questions: drowsy: Q28; sleepy: Q57; sluggish:
Q58; and tired: Q62) and another associated with a higher fre-
quency of response in metastate 2 (attention questions: attentive:
Q11; concentrating: Q18; and lively: Q43). These scores were then
compared on days associated with fasting and caffeine to de-
termine whether the fluctuations in self-reported behavior
tracked with this particular behavioral manipulation or rather, a
broader organization.

Vector Autoregressive Null Model. To determine whether the
clustering identified in the longitudinal data could be observed in
truly stationary data, we simulated data using a series of sta-
tionary, 2D vector autoregressive (VAR) models, which were
used to generate surrogate regional time series satisfying the null
hypothesis of a linearly correlated, stationary, multivariate sto-
chastic process. Consistent with the approach adopted by Zalesky
et al. (4), the VAR model order was chosen to minimize the
Bayesian information criterion (BIC), which was evaluated over a
range of model orders 1–20 for 630 pairs of regions used in this
study. The BIC was minimized for a model order of six, which is
roughly the predicted time associated with the peak of BOLD
response (and as such, is consistent with the results obtained
in ref. 4).
The mean covariance matrix across all 84 sessions from the

discovery group was used to generate 2,500 independent null
datasets, which allows for the appropriate estimation of the tails
of nonparametric distributions (44). These time series were then
filtered in a similar fashion to the BOLD data and used to

estimate the time-averaged connectivity of each session. For each
of 2,500 iterations, the affinity propagation clustering technique
was used to cluster the 84 × 84 matrix comparing the time-
averaged connectivity pattern of each simulated session. In each
of 2,500 iterations, the clustering method only identified a single
cluster, suggesting that the presence of two clusters was signifi-
cantly greater than would be expected by chance if there was no
longitudinal fluctuation in functional connectivity.

Phase Randomized Null Model. To ensure that the major outcome
measures in our study were not caused by overestimation of
nonsignificant fluctuations in the data, we ran a second null
model, in which we coherently randomized the Fourier phase of
the data. This technique was applied to the time series from each
session; after applying our analysis pipeline to these null data,
each of the major outcome measures in the study (i.e., flexibility,
cartography, and efficiency) was estimated, and separate null
distributions were created by taking the maximum difference
between metastate 1 and metastate 2 for each outcome measure
across 2,500 iterations. Values more extreme than the 95th
percentile of this distribution were, thus, considered to be sig-
nificant (44).

Reproducibility of Results in an Independent Longitudinal Dataset.To
reproduce our results, we collected open source rfMRI data from
a separate dataset (https://www.nitrc.org/projects/kirbyweekly/).
Although conceptually similar to the project described above,
these data were collected on a different scanner (3T Philips
Achieva Scanner), and there were some differences in the rfMRI
data, which were acquired using a multislice sensitivity encoded-
echo planar image (SENSE-EPI) pulse sequence with TR/TE =
2,000/30 ms, SENSE factor = 2, flip angle = 75°, 37 axial slices,
nominal resolution = 3 × 3 × 3 mm3, 1-mm gap, 16-channel
neurovascular coil, and number of frames per run = 200. Data
were extracted from 333 cortical regions [from the atlas by
Gordon et al. (37), which used a similar technique to the indi-
vidual analysis] and 14 subcortical regions (fsl.fmrib.ox.ac.uk/fsl/
fslwiki/). Because of differences in spatial coverage between the
group- and individual-level parcellations, we recalculated the
flexibility of each brain region from the individual subject ses-
sions using the 333-region parcellation scheme. These data were
preprocessed and analyzed in an identical fashion to the afore-
mentioned study; however, because of the longer repetition time
used in the replication sample (TR = 2 s), a window length of
five time points (∼10 s) was used to calculate the simple moving
average of the MTD.
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