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SUMMARY

Higher brain function relies upon the ability to flexibly

integrate information across specialized commu-

nities of brain regions; however, it is unclear how

this mechanism manifests over time. In this study,

we used time-resolved network analysis of fMRI

data to demonstrate that the human brain tra-

verses between functional states that maximize

either segregation into tight-knit communities or

integration across otherwise disparate neural re-

gions. Integrated states enable faster and more ac-

curate performance on a cognitive task, and are

associated with dilations in pupil diameter, sug-

gesting that ascending neuromodulatory systems

may govern the transition between these alterna-

tive modes of brain function. Together, our results

confirm a direct link between cognitive performance

and the dynamic reorganization of the network struc-

ture of the brain.

INTRODUCTION

Within the brain, a highly dynamic functional landscape unfolds

on a relatively fixed structural scaffold (Deco et al., 2015; Shen

et al., 2015) in which the emergence of momentary neural coali-

tions forms the basis for complex cognitive functions (Bassett

et al., 2015; Cole et al., 2014), learning (Bassett et al., 2011),

and consciousness (Barttfeld et al., 2015; Godwin et al., 2015).

This view of brain function highlights the role of individual brain

regions within the context of a broader neural network (Bullmore

and Sporns, 2012). Others have noted the importance of time-

sensitive descriptions of brain activity in understanding the func-

tional relevance of alterations in this network structure under

different behavioral conditions (Varela et al., 2001).

Time-resolved analyses of functional neuroimaging data pro-

vide a unique opportunity to examine these time-varying re-

configurations in global network structure. These experiments

provide a sensitive method for non-invasively identifying time-

sensitive shifts in inter-areal synchrony, which has been

proposed as a key mechanism for effective communication be-

tween distant neural regions (Fries, 2015; Varela et al., 2001).

To this end, recent experiments using fMRI data have demon-

strated that global brain signals transition between states of

high and low connectivity strength over time (Zalesky et al.,

2014) and that these fluctuations are related to coordinated pat-

terns of network topology (Betzel et al., 2016); however, the psy-

chological relevance of these fluctuations in network topology

remains poorly understood.

In the present work, we show that dynamic fluctuations

in network structure relate to ongoing cognitive function, and

further demonstrate a relation between these fluctuations

and integration within a network of frontoparietal, striatal, and

thalamic regions that track with the ascending neuromodulatory

system of the brain, as characterized using pupillometry (Joshi

et al., 2016). Together, the results of our experiments provide

mechanistic evidence to support the role of global network

integration in effective cognitive performance.

RESULTS

Fluctuations in Network Cartography

To elucidate fluctuations in the network structure of the brain

over time, we computed a windowed estimate of functional con-

nectivity (Shine et al., 2015) from a cohort of 92 unrelated sub-

jects obtained from the Human Connectome Project (HCP; see

Experimental Procedures; Smith et al., 2013). After identifying

the community structure of the brain’s functional connectivity

network (Rubinov and Sporns, 2010), we estimated the impor-

tance of each region for maintaining this evolving network struc-

ture by calculating its connectivity both within (WT) and between

(BT) each community (see Experimental Procedures; Guimerà

and Nunes Amaral, 2005; Sporns and Betzel, 2016). While previ-

ous studies have clustered these metrics at the regional level us-

ing pre-defined cartographic boundaries (Guimerà and Nunes

Amaral, 2005;Mattar et al., 2015), we hypothesized that the brain

should fluctuate as a whole between cartographic extremes

that were characterized by either segregation (i.e., the extent
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to which communication occurs primarily within tight-knit com-

munities of regions) or integration (i.e., the degree of communi-

cation between distinct regions; Deco et al., 2015), which might

otherwise be obscured by reduction into classes defined by

these arbitrary cartographic boundaries.

To test this hypothesis in the resting state, we created a novel

analysis technique to assess the temporal classification into two

states without requiring the grouping of each region into a pre-

defined cartographic class (Guimerà and Nunes Amaral, 2005),

which we refer to here as the ‘‘cartographic profile.’’ Subject-

level k-means clustering of these full profiles across time

(k = 2, with stable clustering at higher values of k; see Experi-

mental Procedures; Figure S1, available online) identified modes

of information processing that were characterized by either inte-

gration or segregation (Figure 1A). The resting brain explored

a dynamical repertoire within this topological regime (greater

than expected by a stationary null model), fluctuating aperiodi-

cally between the integrated and segregated temporal states,

with the majority of time spent in integrated states (70.32% ±

1.4% of rest session; all variability measures reported as

SDs). Although the majority of the group-level fluctuations

occurred in inter-modular connectivity (i.e., BT values transi-

tioned between high and low states enmasse), we also observed

window-to-window fluctuations in intra-modular connectivity

(WT) within individual parcels (see Video 1 at https://github.

com/macshine/coupling for a demonstration of the fluctuations

of the cartographic profile over time).

The two states also showed differential patterns of regional

inter-modular connectivity (Figures 1C and 2D), with the inte-

grated states characterized by a global increase in inter-

modular communication across the brain (false discovery rate

[FDR] a < 0.05 for all 375 individual parcels). This was also

reflected in graph-theoretic measures of network-wide integra-

tion: temporal windows associated with segregated states had

significantly elevated modularity (QS = 0.55 ± 0.1 versus QI =

0.42 ± 0.2; Cohen’s d = 0.9; p = 10�11; Sporns and Betzel,

2016), whereas those associated with the integrated states

had greater global efficiency (ES = 0.18 ± 0.03 versus EI =

0.24 ± 0.05; d = 1.5; p = 10�8; Bullmore and Sporns, 2012).

The shift toward integration was most prominent in sensory

and attentional networks (Figure 1D; FDR a < 0.05), whereas

segregated states were associated with relatively higher partic-

ipation within regions in the default mode network, suggesting

that the cartographic profile may reflect changes in the engage-

ment of attention and cognition over time (Corbetta and Shul-

man, 2002). Importantly, the fluctuations in global network

topology occurred independently of the mean framewise

displacement in each repetition time (TR) (mean r = 0.01 ±

0.01), nuisance signals from cerebrospinal fluid (CSF) and

deep cerebral white matter (WM) (mean r = �0.02 ± 0.01),

Figure 1. Dynamic Fluctuations in Cartography

(A) Upper: a representative time series of the mean BT for a single individual from the Discovery cohort (HCP #100307). Lower: each temporal window was

partitioned into one of two topological ‘‘states’’ using k-means clustering (red, segregated; blue, integrated).

(B) The mean cartographic profile of both the segregated and integrated states (HCP Discovery cohort; n = 92).

(C) Regions with greater WT in the integrated than segregated state.

(D) Regions with greater BT in the integrated than segregated state.
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and number of modules estimated within each temporal win-

dow (mean r = 0.03 ± 0.10).

Task-Based Alterations in the Cartographic Profile

We next examined whether the balance between network inte-

gration and segregation tracked with ongoing cognitive function

using data from a cognitively demanding ‘‘N-back’’ task (Barch

et al., 2013). We observed a strong correlation between fluctua-

tions in cartography across all parcels and the blocks of the

experimental task (group mean Pearson’s r = 0.521; R2 = 0.27;

p = 10�10; Figure 2A; Video 2, https://github.com/macshine/

coupling), as well as a distinct alteration in the cartographic pro-

file when compared to the resting state (Figure 2B). These

changes were coincident with increased task-driven connectiv-

ity between frontoparietal, dorsal attention, cingulo-opercular,

and visual networks (2-back versus 0-back blocks; FDR q <

0.05; Figure S4), suggesting that global integration may have

facilitated communication between otherwise segregated sys-

tems during the more challenging 2-back condition. Importantly,

the extent of integration remained correlated with the task

regressor even after controlling for the global signal (mean r =

0.452 ± 0.21; p = 10�10) and themean time-resolved connectivity

across all parcels (mean r = 0.393 ± 0.14; p = 10�9), suggesting

that the fluctuations in topology were not simply driven by con-

straints imposed by the task structure.

Together, these results suggest that the brain transitions into a

state of higher global integration in order to meet extrinsic task

demands. Indeed, all of the 375 regions showed a significant

shift toward greater inter-modular connectivity (BT) during the

N-back task when compared to the resting state (FDR a < 0.05

for all 375 regions). Despite this global shift toward integration,

the effect was most pronounced within frontoparietal, default

mode, striatal, and thalamic regions (Figure 2C), many of which

have been previously identified as belonging to a ‘‘rich club’’ of

densely interconnected, high-degree ‘‘hub’’ nodes that are crit-

ical for the resilience and stability of the global brain network

(van den Heuvel and Sporns, 2013). Importantly, the involvement

of these highly interconnected hub regions during the task would

likely facilitate effective communication between specialist re-

gions that would otherwise remain isolated, thus affording a

larger repertoire of potential responses to deal with the chal-

lenges of the task.

To determine whether network topology was sensitive to spe-

cific task demands, we calculated the cartographic profile in the

remaining six tasks from the HCP in the same cohort of 92

subjects (Barch et al., 2013). While the performance of each

task also led to an increase in global integration relative to rest,

the effect was less pronounced than the lateral shift observed

in the N-back task, particularly when compared to the relatively

simple motor task (88.8% of parcels showed higher BT in the

Figure 2. Alteration of Cartographic Profile during Task Performance

(A) Time series plot demonstrating the close temporal relationship between mean BT across 100 subjects (thick black line; individual subject data plotted in gray)

and task-block regressors (blue line) (Pearson’s correlation between regressor and group mean BT, r = 0.521).

(B) Regions of the 2D joint histogram that were significantly different between N-back task blocks and the resting state (paired-samples t test). Colored points

indicate regions that survived false discovery correction (FDR a < 0.05): red/yellow, increased frequency during N-back task blocks; blue/light blue, increased

frequency during resting state (FDR a < 0.05).

(C) Surface projections of parcels associated with higher WT (left) or BT (right) during the N-back task, when compared the resting state: frontoparietal and

subcortical ‘‘hub’’ regions showed elevated BT during task, whereas WT was elevated in primary systems and decreased in default mode regions.

(D) A plot quantifying the shift away from the cartographic profile in the resting state (along the between-module [BT] connectivity axis) across the six tasks in the

HCP dataset (error bars reflect SD across the Discovery cohort).
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N-back task; FDR a < 0.05). This effect was quantified by esti-

mating the affine transformation required to align each subject’s

resting cartographic profile with their profile during each task

(transformation along the BT axis relative to rest; Figure 2D).

These results demonstrate that the extent of reconfiguration

varies as a function of task: the relatively simple motor task,

which involved repetitive movements of specific effectors, was

associated with greatest segregation, whereas the more com-

plex N-back task, which required complex working memory

updating and cognitive control, was associated with greatest

integration. The other five tasks recruited levels of integration

between these two extremes. Together, these results suggest

that integration may be particularly important for more difficult

tasks, perhaps involving cognitive control; however, additional

work will be necessary to identify the specific demands that

drive global integration.

Investigating the Relationship between Cartography

and Behavior

Based on these findings, we predicted that a more globally inte-

grated network architecture would give rise to faster, more effec-

tive information processing during task performance. To test

this hypothesis, we fit a drift diffusion model to each subject’s

Figure 3. Relationship between Task Per-

formance and the Cartographic Profile

(A) A graphical depiction of the drift-diffusion

model, which uses the mean and SD of a subject’s

reaction time and performance accuracy to esti-

mate the ‘‘drift rate,’’ or rate of evidence accumu-

lation (v), the length of non-decision time (t), and

the response boundary (a).

(B) Left: group-level correlation between drift rate

on the N-back task and each bin of the mean

cartographic profile during the N-back task in the

Discovery cohort. Right: parcels showing a posi-

tive correlation between mean BT and drift rate.

(C) Left: group-level correlation between non-de-

cision time on the N-back task and each bin of the

mean cartographic profile during the N-back task

in the Discovery cohort. Right: parcels showing

a negative correlation between mean BT and

non-decision time (FDR a = 0.05). No bins of the

cartographic profile showed a consistent response

with the response boundary. Similarly, no parcels

showed a significant correlation between WT and

any of the three diffusion model fits.

behavior (response time distributions

and accuracy) on the more cognitively

challenging 2-back trials within the

N-back task using the EZ-diffusion model

(Wagenmakers et al., 2007; Figure 3A).

The diffusion model provides a decom-

position of behavioral performance into

cognitively relevant latent variables rep-

resenting the speed and accuracy of in-

formation processing (drift rate, ‘‘v’’), the

speed of perceptual andmotor processes

not directly related to the decision pro-

cess (non-decision time, ‘‘t’’), and a flexible measure of response

caution (boundary separation, ‘‘a’’; Ratcliff, 1978). Theoretically,

faster progression throughout all stages of information process-

ing from perception through action should be reflected in a pos-

itive relationship between global integration and both faster drift

rate and shorter non-decision time, whereas integration should

be independent of the boundary parameter.

We compared these model parameters to the mean N-back

cartographic profile across the Discovery cohort (Figure 3A).

The extent of global network integration in the cartographic pro-

file was positively correlated with drift rate (Figure 3B), inversely

correlated with non-decision time (Figure 3C), and had no rela-

tionship to the boundary threshold. Each of these patterns was

replicated in a separate cohort of 92 subjects. For both drift

rate and non-decision time (and in both the Discovery and Repli-

cation cohorts), the relationship between cognitive function and

integration was most pronounced across frontoparietal, striatal,

thalamic, and pallidal regions (FDR a < 0.05; Figures 3B and 3C).

Together, these results suggest that a globally efficient, inte-

grated network architecture supports fast, effective computation

throughout the cognitive processing stream (Krienen et al.,

2014), potentially through the facilitation of parallel processing

mechanisms (Sigman and Dehaene, 2008).
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Network Cartography Fluctuates with Pupil Diameter

Based on the results of these experiments, we hypothesized that

neuromodulatory brain systems that mediate neural gain control

(Aston-Jones and Cohen, 2005) may play an important role in

regulatingglobal integration.Recent invasive electrophysiological

recordings in non-human primates have shown that non-lumi-

nance-relatedfluctuations inpupil diameter trackwithneural firing

in ascending neuromodulatory systems, such as the locus coeru-

leus, confirming the well-established proposal (Kahneman, 1973)

that pupil diameter is a surrogate measure for arousal and task

engagement (McGinley et al., 2015). Therefore, wemeasured pu-

pil diameter from individuals in a separate resting statedataset (14

individuals; TR = 2 s; 3.5mm3 voxels; 204 volumes; Murphy et al.,

2014) and compared alterations in pupil diameter with the carto-

graphic profile (w = 10 TRs). As predicted, we observed a positive

correlation between pupil diameter and mean BT (group mean

r = 0.241 ± 0.06; R2 = 0.06; p = 10�5; Figure 4) that was maximal

within frontoparietal, striatal, and thalamic regions. In keeping

with Eldar et al. (2013), these results suggest that the observed

global fluctuations in network structure over time may have

been driven by ongoing dynamic alterations in ascending neuro-

modulatory input to the cortex and subcortex, which, through

the modulation of neural gain, may have mediated increases in

connectivity between otherwise segregated regions of the brain.

Identifying Regions Related to Global Integration

To further investigate the neurobiological mechanisms respon-

sible for fluctuations in network topology over time, we used a

parcel-wise conjunction analysis (Nichols et al., 2005) to identify

a set of regions that were significantly related to drift rate, non-

decision time, and pupil diameter. This analysis revealed a

right-lateralized network of frontal, parietal, thalamic, and striatal

regions that were associated with consistently elevated BT

across the three comparisons (blue; Figure 4C) and a set of

regions in visual cortex and insula that were associated with

elevated WT (red; Figure 4C). Together, these results highlight

a distributed network of brain regions that mediate the computa-

tional integration required for effective cognitive processing.

Reproducibility

To test the reproducibility of our results, we performed three

separate replication analyses: (1) on a second resting state ses-

sion from the same cohort of 92 unrelated subjects, (2) on a

different cohort of 92 unrelated subjects from the HCP con-

sortium, and (3) on 152 subjects from a separate dataset

acquired at a different scanning site, using high-resolution func-

tional data from the NKI Rockland dataset (Nooner et al., 2012).

For each analysis in the resting state, we replicated the analyses

described above and then summarized each outcome measure

of interest at the group level (minimum r = 0.564; all p < 0.001; see

Experimental Procedures). In the task data, each of the relation-

ships identified between the cartographic profile and behavior

was replicated in the second set of 92 individuals from the

HCP (both r > 0.610; p < 0.001; Figure S2). These results suggest

that the time-resolved measures identified in this study were

reliable across sessions, individuals, and independent datasets

collected using different scanners and imaging protocols.

DISCUSSION

In this manuscript, we mapped the spatiotemporal dynamics

of complex network structure in the human brain, revealing a

Figure 4. Relationship between Cartography and Pupillometery

(A) An example time series (subject #1) showing the covariance between the pupil diameter (after convolution with a hemodynamic response function; blue) and

mean between-module connectivity (BT; red).

(B) Mean Pearson correlation between each bin of the cartographic profile and the convolved pupil diameter. Across the cohort of 14 subjects, we observed a

positive relationship between pupil diameter and network-level integration (FDR a = 0.05).

(C) Results from a conjunction analysis (FDR a < 0.05) that compared relationships between WT (red) or BT (blue) and drift rate (positive correlation), non-decision

time (inverse correlation), and pupillometery (positive correlation). There were no cerebellar parcels above threshold in all three contrasts.
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dynamical system that fluctuates between segregated and inte-

grated network topology (Figure 1). The cartographic profile

observed in the resting state wasmodulated by the performance

of a range of cognitive tasks in proportion to task demands

(Figure 2). Importantly, the extent to which the brain was globally

integrated was correlated with faster drift rate and shorter non-

decision time during the N-back task, suggesting that integration

relates to fast and effective cognitive performance (Figure 3). We

then showed that integration within the functional connectome

correlated with increases in pupil diameter (Figure 4), high-

lighting a potential neurobiological mechanism responsible for

modulating network-level dynamics in the human brain. Finally,

we were able to demonstrate that a network of right-lateralized

frontoparietal, striatal, and thalamic regions was responsible

for mediating the effects of integration on cognitive function

(Figure 4C).

In our final experiment, we demonstrated that the fluctuations

in network cartography in the resting state correlate with

changes in pupil diameter (Figure 4), which itself is a marker of

arousal and behavioral engagement (McGinley et al., 2015).

The locus coeruleus (Aston-Jones and Cohen, 2005) is known

tomodulate pupil diameter (Joshi et al., 2016), and thus, by infer-

ence, may play a role in the modulation of fluctuations in global

network topology through phasic alterations in neural gain (Eldar

et al., 2013). Thus, our results extend previous studies that have

demonstrated a crucial link between neural gain and functional

connectivity (Eldar et al., 2013; Yellin et al., 2015) by showing

that fluctuations in neural gain are linked to alterations in network

topology that, in turn, relate to effective behavioral performance.

There is a wealth of evidence to suggest that neuromodulatory

inputs can have complex, non-linear effects on network organi-

zation and behavior (Bargmann and Marder, 2013), perhaps as a

result of the balance between the ‘‘top-down’’ attentional mod-

ulation of network architecture (Sara, 2009) and ‘‘bottom-up’’

neuromodulatory input from the brainstem (Safaai et al., 2015).

The network of right-lateralized cortical regions consistently

associated with elevations in integration in our study provides

further support for this hypothesis (Figure 4C), as ascending

noradrenergic inputs preferentially impact neural function within

the right cortical hemisphere (Pearlson and Robinson, 1981).

While our results suggest a crucial role for ascending noradren-

ergic gain control, the topological organization of the functional

connectome is likely to arise as the end result of multiple

competing factors, including changes in tone within other neuro-

modulatory systems, such as the basal cholinergic nuclei (Ster-

iade and McCarley, 2013); local interactions among functional

regions; and activity in other diffuse projection systems, such

as the intralaminar thalamic nuclei (Van der Werf et al., 2002).

Irrespective of the precise mechanism driving global fluc-

tuations, our results suggest that system-wide alterations in

network topology facilitate more effective behavioral perfor-

mance, a hypothesis that has already garnered support from

studies both in network dynamics (Kitzbichler et al., 2011) and

pupillometery (Murphy et al., 2016). There is now growing evi-

dence to support the notion that the brain traverses ametastable

state-space in time (Deco et al., 2015), balancing the opposing

tendencies for specialized, segregated processing with the

need for global coordination and integration (Tognoli and Kelso,

2014). In addition, others have recently shown that fluctuations in

network topology relate to distinct patterns of behavior during

cognitive tasks (Alavash et al., 2016; Vatansever et al., 2015).

Here, we extend these studies by demonstrating fluctuations

in network topology that relate to computationally meaningful

measures of effective behavioral performance.

Although we were able to demonstrate that greater system-

wide integration was associated with improved cognitive perfor-

mance on anN-back task, the precise role of network topology in

cognition requires further exploration. The N-back task is often

used as a measure of cognitive control, which itself is a complex

construct composed of dissociable sub-components, such as

updating, set-shifting, and response inhibition (Miyake et al.,

2000), that likely rely on overlapping, yet distinct, neural architec-

tures (Duncan, 2010; Poldrack et al., 2011). We demonstrated

that the extent of reconfiguration varies as a function of task:

the relatively simple motor task, which involved repetitive move-

ments of specific effectors, was associated with greatest segre-

gation, whereas the more complex cognitive N-back task, which

required complex working memory updating and cognitive con-

trol, was associated with greatest integration. The other five

tasks recruited levels of integration between these two extremes

(see Figure 2D). Together, these results suggest that integration

may be particularly important for more difficult tasks, perhaps

involving cognitive control; however, additional work will be

necessary to identify the specific cognitive demands that drive

global integration.

There are also some important limitations to note in our study.

First, although we provide indirect evidence for the relationship

between neural gain and effective cognitive performance, the

direct relationship between ascending neuromodulatory input

to the brain and network topology requires further confirmation,

perhaps utilizing the temporal resolution afforded by electro-

physiological measures or the direct investigation of the influ-

ence of major neurotransmitter systems using neuromodulatory

techniques, such as optogenetics. Second, on the basis of fMRI

data alone, it is not possible to determine whether global integra-

tion facilitated increased connectivity between otherwise dispa-

rate regions, or whether the topological changes were merely

a necessary byproduct of increased communication between

specialist regions of the brain (Ramsey et al., 2010). Although

the resolution of this question would likely require the causal

manipulation of the brain (Keller et al., 2014), the utilization of

computational modeling approaches may offer some insight

into the underlying mechanism (Deco et al., 2015). Finally,

although we directly compared the Multiplication of Temporal

Derivatives (MTD) approach to sliding-window Pearson’s corre-

lation, the standard approach used to calculate time-resolved

connectivity, there are many techniques used to estimate these

measures (Hutchison et al., 2013), and as such, further work

is required to determine the robustness of the fluctuations in

network topology across multiple time-sensitive connectivity

metrics.

Together, our results demonstrate that global brain integration

is closely related to cognitive function during an N-back task. By

catalyzing communication between specialist regions of the

brain that would otherwise remain segregated, global integra-

tion increases an individual’s ability to accomplish complex
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cognitive tasks, potentially accelerating behavioral innovation

and improving fitness in novel scenarios (Shanahan, 2012). As

such, global integration is an important candidate mechanism

responsible for the evolution of complex brain networks (van

den Heuvel et al., 2016) and, hence, for explaining the

mechanism through which the brain creates complex, adaptive

behavior.

EXPERIMENTAL PROCEDURES

Data Acquisition

For the primary discovery analysis, minimally preprocessed resting fMRI data

were acquired from 100 unrelated participants from the HCP (mean age

29.5 years, 55% female; Glasser et al., 2013). For each participant, 14 min,

30 s of resting state data were acquired using multiband gradient-echo

EPI (echo planar imaging). The following parameters were used for data acqui-

sition: TR = 720ms, echo time = 33.1 ms, multiband factor = 8, flip angle = 52�,

field of view = 208 3 180 mm (matrix = 104 3 90), 2 3 2 3 2 isotropic voxels

with 72 slices, alternated LR/RL phase encoding.

In addition to the discovery analysis, we also performed an extensive series

of replication analyses, including (1) data from the same participants using

resting state data acquired during a second rest scan during the same scan-

ning session, (2) an independent cohort of 100 unrelated participants from

the HCP dataset using identical acquisition parameters at the same scanning

site, and (3) an out-of-sample replication using data collected from the NKI

Rockland sample (TR = 650 ms; voxel size 3 mm3) as part of the 1000 Func-

tional Connectomes Project (Nooner et al., 2012). The data reported in this

paper were made publicly available by the HCP and 1000 Functional Con-

nectomes project and were subject to their own institutional review board

requirements.

Data Preprocessing

Bias field correction and motion correction (12 linear degrees of freedom

[DOFs] using FSL’s FLIRT) were applied to the HCP resting state data as

part of the minimal preprocessing pipeline (Glasser et al., 2013). The first

100 time points were discarded from the data due to the presence of an

evoked auditory signal associated with noise in the scanner. Resting state

data acquired from the NKI Rockland sample were realigned to correct for

head motion, and then each participant’s functional scans were registered

to both their T1-weighted structural image and then to the MNI152 atlas using

FSL boundary-based registration and Advanced Normalization Tools software

(Avants et al., 2008). After co-registration, data were manually inspected and

of the 173 original participants, 11 (6.3%) scans were discarded due to

insufficient coverage of orbitofrontal cortex, temporopolar cortex, and/or

cerebellum.

Temporal artifacts were identified in each dataset by calculating framewise

displacement (FD) from the derivatives of the six rigid-body realignment pa-

rameters estimated during standard volume realignment (Power et al., 2014),

as well as the root-mean-square change in BOLD signal from volume to vol-

ume (DVARS). Frames associated with FD >0.5mmor DVARS >5%were iden-

tified, and participants with greater than 20% of the resting time points

exceeding these values were excluded from further analysis (HCP group 1,

8/100; HCP group 2, 8/100; NKI group, 10/162). Due to concerns associated

with the alteration of the temporal structure of the images, the data used in

the main analysis were not ‘‘scrubbed’’ (Power et al., 2014); however, we did

compare the results of our experiment with scrubbed data (missing values cor-

rected using interpolation) and found strong correspondence between the

outcome measures of the two studies (see Validation). Following artifact

detection, nuisance covariates associated with the twelve linear head move-

ment parameters (and their temporal derivatives), FD, DVARS, and anatomical

masks from the CSF and deep cerebral WM were regressed from the data

using the CompCor strategy (Behzadi et al., 2007). Finally, in keeping with

previous time-resolved connectivity experiments (Bassett et al., 2015), a tem-

poral band pass filter (0.071 < f < 0.125 Hz) was applied to the data (see

Validation).

Brain Parcellation

Following preprocessing, the mean time series was extracted from 375

pre-defined regions of interest (ROIs). To ensure whole-brain coverage, we

extracted 333 cortical parcels (161 and 162 regions from the left and right

hemispheres, respectively) using the Gordon atlas (Gordon et al., 2016), 14

subcortical regions from Harvard-Oxford subcortical atlas (bilateral thalamus,

caudate, putamen, ventral striatum, globus pallidus, amygdala, and hippo-

campus), and 28 cerebellar regions from the SUIT atlas (Diedrichsen et al.,

2009). These ROIs were chosen to maximize our ability to interrogate

fluctuations in network architecture over time; however, it bears mention

that functional divisions may differ across subjects (Laumann et al., 2015).

Time-Resolved Functional Connectivity

To estimate functional connectivity between the 375 ROIs, we used a recently

described statistical technique (MTD; Shine et al., 2015) that allows greater

temporal resolution of time-resolved connectivity in BOLD time series data

when compared to the conventional sliding-window Pearson’s correlation

coefficient (Shine et al., 2015). The MTD is computed by calculating the

point-wise product of temporal derivative of pairwise time series (Equation 1).

The MTD is averaged over a temporal window, w, in order to reduce

the contamination of high-frequency noise in the time-resolved connectivity

data. Code is freely available at https://github.com/macshine/coupling/.

MTDijt =
1

w

X

t +w

t

ðdtit 3dtjtÞ
�

sdti 3 sdtj

� (Equation 1)

Equation 1 shows the MTD, where for each time point, t, the MTD for the

pairwise interaction between region i and j is defined according to Equation 1,

where dt is the first temporal derivative of the ith or jth time series at time t, s

is the SD of the temporal derivative time series for region i or j, and w is the

window length of the simple moving average. This equation can then be calcu-

lated over the course of a time series to obtain an estimate of time-resolved

connectivity between pairs of regions.

Time-Resolved Functional Connectivity

Time-resolved functional connectivity was calculated between all 375 brain

regions using the MTD (Shine et al., 2015) within a sliding temporal window

of 14 time points (10.1 s for HCP; 16 time points for NKI data,�10.4 s). Individ-

ual functional connectivity matrices were calculated within each temporal

window, thus generating an unthresholded (i.e., signed and weighted) 3D ad-

jacency matrix (region 3 region 3 time) for each participant. Previous work

has shown that when using the MTD, a window length of seven time points

provides optimal sensitivity and specificity for detecting dynamic changes in

functional connectivity structure in simulated time series data (Shine et al.,

2015). To balance these benefits with the need to track changes in slow

cortical fluctuations that are hypothesized to fluctuate at �0.1 Hz (Shen

et al., 2015), we used a temporal window of 14 time points to calculate a simple

moving average of the MTD, which allowed for estimates of signals at approx-

imately 0.1 Hz. While there are statistical arguments to suggest that the poten-

tial effects of noise can render estimation of connectivity matrices difficult with

smaller samples, it is currently unclear whether these issues will have the same

effects on the covariance estimates created with the MTD. However, we note

that the MTD is more sensitive to changes in covariance than connectivity

(Shine et al., 2015), and others have shown that covariance is a more reliable

marker of coupling strength in BOLD data (Cole et al., 2016). Most importantly,

as we show, our analyses were reliable and replicable using the MTD across

multiple datasets.

Time-Resolved Community Structure

The Louvain modularity algorithm from the Brain Connectivity Toolbox (BCT;

Rubinov and Sporns, 2010) was used in combination with the MTD to estimate

both time-averaged and time-resolved community structure. The Louvain

algorithm iteratively maximizes the modularity statistic, Q, for different com-

munity assignments until the maximum possible score of Q has been obtained

(see Equation 2). The modularity estimate for a given network is therefore a

quantification of the extent to which the network may be subdivided into

communities with stronger within-module than between-module connections.
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QT =
1

n+

X

ij

�

w+
ij � e+

ij

�

dMiMj
�

1

n+ + n�

X

ij

�

w�
ij � e�

ij

�

dMiMj
(Equation 2)

Equation 2 shows the Louvain modularity algorithm, where v is the total

weight of the network (sum of all negative and positive connections), wij is

the weighted and signed connection between regions i and j, eij is the strength

of a connection divided by the total weight of the network, and dMiMj is set to 1

when regions are in the same community and 0 otherwise. ‘‘+’’ and ‘‘�’’ super-

scripts denote all positive and negative connections, respectively.

For each temporal window, the community assignment for each region was

assessed 500 times and a consensus partition was identified using a fine-tun-

ing algorithm from the BCT (http://www.brain-connectivity-toolbox.net/). This

afforded an estimate of both the time-resolved modularity (QT) and cluster

assignment (CiT) within each temporal window for each participant in the

study. All graph theoretical measures were calculated on weighted and signed

connectivity matrices (Rubinov and Sporns, 2010), and the g parameter was

set to 1.

Based on time-resolved community assignments, we estimated within-

module connectivity by calculating the time-resolved module-degree Z score

(WT, within-module strength) for each region in our analysis (Equation 3; Gui-

merà and Nunes Amaral, 2005).

WiT = kiT � k
0

siT

sksiT

(Equation 3)

Equation 3 shows the module-degree Z score, WiT, where kiT is the strength

of the connections of region i to other regions in its module si at time T, k
0

siT is

the average of k over all the regions in si at time T, and sksiT
is the SD of k in si

at time T.

Time-Resolved Hub Structure

The participation coefficient, BT, quantifies the extent to which a region con-

nects across all modules (i.e., between-module strength) and has previously

been used to successfully characterize hubs within brain networks (e.g., see

Power et al., 2013). The BT for each region was calculated within each tempo-

ral window using Equation 4.

BiT = 1�
X

nM

s=1

�

kisT

kiT

�2

(Equation 4)

Equation 4 shows the participation coefficient BiT, where kisT is the strength

of the positive connections of region i to regions in module s at time T, and kiT is

the sum of strengths of all positive connections of region i at time T. The partic-

ipation coefficient of a region is therefore close to 1 if its connections are uni-

formly distributed among all the modules and 0 if all of its links are within its

own module.

Cartographic Profiling

To track fluctuations in cartography over time, we created a novel analysis

technique that did not require the labeling of each node into a pre-defined

cartographic class (Guimerà and Nunes Amaral, 2005). For each temporal win-

dow, we computed a joint histogram of within- and between-module connec-

tivity measures, which we refer to here as a ‘‘cartographic profile’’ (Figure 1).

Code for this analysis is freely available at https://github.com/macshine/

integration/. To test whether the cartographic profile of the resting brain fluc-

tuated over time between two topological extremes, we performed clustering

of temporal windowswithout the use of cartographic class labels. To do so, we

classified the joint histogram of each temporal window (which is naive to carto-

graphic boundaries) over time using a k-means clustering analysis (k = 2). As

a result of this analysis, each window was assigned to one of two clusters.

k-means was repeated with 500 random restarts to mitigate the sensitivity of

k-means to initial conditions.

To ensure that the a priori choice of two clusters for the k-means analysis

was reflective of the broader patterns in the data across multiple values of k,

we re-ran the clustering analysis in the discovery cohort of 92 subjects across

a range of k values (2–20) and then compared the resultant cluster partitions to

the k = 2 clusters by calculating the mutual information between each pair of

partitions. The partition identified at each value of k was strongly similar to

the pattern identified at k = 2 (mean mutual information = 0.400 ± 0.02; Fig-

ure S1). We also provided further evidence for this partition by performing a

principle component analysis for each subject’s data—this test demonstrated

that the first two principle components for each subject were associated with

the integrated (20.2% ± 1.4% variance) or segregated state (4.9% ± 2.3%

variance).

To explicitly test whether the resting brain fluctuated more frequently than a

stationary null model, we calculated the absolute value of the window-to-win-

dow difference in the mean BT score for each iteration of a vector autoregres-

sion (VAR) null model. In keeping with Zalesky et al. (2014), VAR model order

was set at 11, appropriately mimicking the expected temporal signature of

the BOLD response in 0.72 s TR data. The mean covariance matrix across

all 92 subjects from the discovery group was used to generate 2,500 indepen-

dent null datasets, which allows for the appropriate estimation of the tails of

non-parametric distributions (Nichols and Holmes, 2002). These time series

were then filtered in a similar fashion to the BOLD data. For each analysis,

the maximum statistic was concatenated for each independent simulation.

We then calculated the 95th percentile of this distribution and used this value

to determine whether the resting state data fluctuatedmore frequently than the

null model. In the discovery cohort, 16.1% ± 1.1% of temporal windows were

associated with deviationsR95th percentile of the VAR null model (i.e., greater

than the predicted 5%), suggesting that the resting state was associated with

significant dynamic fluctuations in topology. Importantly, the significant fluctu-

ations along the BT axis remained after correcting for ongoing changes in the

number of modules per temporal window.

To estimate patterns of topology associated with each state, the original 3D

connectivity matrix containing MTD values was then reorganized into those

windows associated with the two states (defined in the k-means analysis;

k = 2). The modularity of these windows associated with each of the two states

was then compared statistically using an independent-samples t test. Impor-

tantly, the two states were matched on graph density, suggesting that the fluc-

tuations in BT did not occur simply due to alterations in network sparsity over

time. A similar technique was used to estimate the global efficiency of each

temporal window. As global efficiency (Equation 5) cannot be computed

from networks with negative weights (Barch et al., 2013), we first thresholded

the connectivity matrix within each window to include only positive edge

weights before calculating global efficiency on the remaining connected

component.

Eglob =
2

nðn= 1Þ

X

n

i < j˛G

1

di;j

(Equation 5)

Equation 5 shows the global efficiency of a network, where n denotes the

total nodes in the network and di,j denotes the shortest path between a

node i and neighboring node j.

To estimate the patterns of brain connectivity associated with each state, we

binned each region’s WT and BT scores into those windows associated with

either integrated or segregated states (using the k = 2 partition). We then

compared the regional WT and BT scores across the two states using an inde-

pendent-samples t test. As expected, all 375 parcels demonstrated higher BT

in the more integrated states, whereas none of the 375 parcels showed signif-

icantly differentWT in either state (FDR a < 0.05). For interpretation and display,

regional BT scores were converted into Z scores and then projected onto sur-

face renderings (Figure 1). We also performed a targeted analysis to determine

whether activity and connectivity within the default network were related to

fluctuations in BT (activity, group mean r =�0.044 ± 0.09, p = 10�5; connectiv-

ity, group mean r = 0.127 ± 0.09, p = 10�12).

Task-Based Alterations in the Cartographic Profile

To assess task-based functional connectivity, preprocessed data from the

original 92 unrelated subjects from the discovery cohort were collected while

these subjects performed seven different tasks in the fMRI (see Barch et al.,

2013 for further details of each experimental paradigm). The mean time series

was then extracted from the same 375 regions as defined in the resting state

analysis. To control for spurious patterns of connectivity associated with

task-evoked activity, we first regressed the hemodynamic response function
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(HRF)-convolved task block data from each time series. The MTD metric

was then calculated on the residuals of this regression using a window length

of 14 TRs (�10 s at 0.72 s TR). These data were then subjected to a carto-

graphic profiling analysis in a similar fashion to the resting state data. We

also directly modeled the mean time-resolved network-level connectivity

associated with 2-back and 0-back blocks in the N-back task using a

mixed-effects general linear model (FDR q < 0.05; Figure S4). The network

membership of each of the parcels was defined according to a previous study

(Gordon et al., 2016).

To compare the patterns of time-resolved connectivity across the N-back

task to those observed during rest, we tested whether any bins within the

2D cartographic profile were significantly modulated by task by running a

mixed-effects general linear model analysis at the individual level, fitting the

group-averaged joint histogram to regressors tracking 2-back, 0-back, and

rest blocks in both the motor and the N-back task, separately. We then

compared the task blocks and the resting state data statistically using sepa-

rate two-sided, one-sample t tests across subjects (FDR a < 0.05). We

observed a rightward deviation in the mean cartographic profile during the

2-back versus 0-back block; however, to allow direct comparison across tasks

and rest, we opted to include the mean 2-back profile for each comparison

described in the main manuscript. A similar analysis was run comparing the

mean WT and BT across all 375 parcels. As in previous steps, the regional

BT scores were converted into Z scores (otherwise, the regional heterogeneity

associated with each task would be hidden within the much larger mean

effect) and then projected onto surface renderings (Figure 2).

In order to assess the alteration in the cartographic profile as a function of

task performance, we estimated the affine transformation (using a correlation

cost function with 3� of freedom, including translation and rotation parameters)

between each individual subject’s resting state cartographic profile and the

profile observed in each of the seven tasks. To ensure that any differences

observed during task performance were not confounded by fluctuations in

global signal or connectivity, we replicated the analysis after separately re-

gressing the global signal and the mean MTD value across all parcels (global

signal, mean r = 0.452 ± 0.21, p = 10�10; mean MTD, mean r = 0.393 ± 0.14,

p = 10�9).

Investigating the Relationship between Cartography and Behavior

To interrogate the relationship between the cartographic profile and behav-

ioral performance, we fit an EZ-diffusion model to the performance measures

from the N-back task (Wagenmakers et al., 2007). This model takes in the

mean response time (RT) on correct trials, mean variance of RT across cor-

rect trials, and mean accuracy across the task and computes from them a

value for drift rate, boundary separation, and non-decision time—the three

main parameters for the diffusion model (Figure 3). We used the EZ-diffusion

model instead of alternative diffusion fitting routines (e.g., fast-dm or DMAT)

because previous work has shown that the EZ-diffusion model is particularly

effective for recovering individual differences in parameter values, which

were of particular interest in this experiment (van Ravenzwaaij and Oberauer,

2009). After fitting each subject’s data to the diffusion model, we then per-

formed a group-level Pearson’s correlation between each bin of the mean

joint histogram in each task and the three outcome measures associated

with the N-back task: the drift rate (Figure 3B), the non-decision time (Fig-

ure 3C), and the boundary threshold (data not shown, as no bins survived

multiple comparisons correction). The model was fit on results from the

2-back task blocks, as a many subjects made no errors on the 0-back con-

dition, thus precluding our ability to fit their data to the parameters of the drift

diffusion model. For each comparison, the null hypothesis of no relationship

was rejected after FDR correction (p < 0.05). We also compared the

cartographic profile with median reaction time and accuracy for both the co-

horts and observed a similar relationship between integration and improved

performance.

Some work suggests that the EZ-diffusion model performs poorly when

there are ‘‘contaminants’’ in the data (Ratcliff et al., 2015), which are trials in

which the usual diffusion parameters do not apply (like fast guesses and atten-

tional lapses). We searched for evidence of contaminants in our data and

found no evidence of them (i.e., the few fast responses [110 RTs <400 ms

across both samples] were not guesses [93% accuracy was the same as

the 93% accuracy for all trials]). Therefore, we proceeded with the EZ-diffusion

model, which performs as well as or better than more complicated fitting rou-

tines when contaminants are not present (Ratcliff et al., 2015; van Ravenzwaaij

and Oberauer, 2009).

Network Cartography Fluctuates with Pupil Diameter

To test the hypothesis that fluctuations in cartography related to activity

in ascending neuromodulatory systems, we acquired a separate dataset of

14 individuals (mean age 29 years, 8/14 male) in which pupil diameter was

measured over time during the quiet resting state (TR = 2 s; 3.5 mm3 voxels;

204 volumes; Murphy et al., 2014). Participants were instructed to relax, think

of nothing in particular, and maintain fixation for 8 min at a centrally presented

crosshair (subtending 0.65� of the visual angle). BOLD fMRI data were prepro-

cessed using SPM8 software (www.fil.ion.ucl.ac.uk/spm). Pupil diameter was

recorded continuously from the left eye at rest and during task using an iView

XMRI-SV eye tracker (SMI) at a sampling rate of 60Hz. Pupillometric datawere

thoroughly preprocessed to remove potential sources of noise (see Murphy

et al., 2014 for details) and then downsampled to a 0.5 Hz sampling rate (in or-

der to match the sampling frequency of the fMRI data). A pupil diameter vector

for each scanning run was then convolved with the informed basis set to yield

three pupil regressors of interest per participant. Themean of these regressors

was then correlated with the cartographic profile across all temporal windows

for each of the 14 subjects (mean correlation, r = 0.241 ± 0.06). A set of one-

sample t tests was then used to test whether the correlation between each

bin of the cartographic profile was significantly different from zero (FDR a <

0.05). A similar t test was used to determine whether the correlation between

the mean BT and pupil diameter was significantly greater than zero across the

cohort of 14 subjects.

Identifying Regions Related to Global Integration

We used a parcel-wise conjunction analysis (Nichols et al., 2005) to identify a

set of regions in which the BT and WT were significantly related to drift rate,

non-decision time, and pupil diameter. For each comparison in turn, we deter-

mined whether the WT/BT individual parcel was significantly correlated with

each outcome measure of interest above chance (FDR a < 0.05). We then bi-

narized the resultant parcel vectors and calculated a conjunction analysis

separately for both WT and BT. Results were then projected onto surface

renderings for interpretation.

Replication Analysis

To quantify how well our results replicated across sessions and datasets, we

calculated group-level correlations between each of the measures identified in

our analysis. Overall, we observed a strong positive correlation between the

outcome measures identified in the two sessions (for all statistical tests, p <

0.001): graphmeasures, – rWT
= 0.982, rBT

= 0.957; mean cartographic profiles,

rCart = 0.982 (Figure S2). We also confirmed the presence of these results

in a unique cohort of 92 unrelated participants from the HCP: graph mea-

sures, – rWT
= 0.971, rBT

= 0.967; mean cartographic profiles, – rCart = 0.973

(Figure S2). We also observed similarly positive relationships between the

group-level outcome measures estimated from the HCP and NKI data (for all

statistical tests, p < 0.001): graph measures, – rWT
= 0.941, rBT

= 0.857;

mean cartographic profiles, – rCart = 0.927 (Figure S2). In addition, the same

fluctuations observed in the HCP dataset were also present in the NKI dataset

(see Video 3 at https://github.com/macshine/coupling).

Finally, the linear relationships between behavioral performance and the

cartographic profile were consistent across the discovery and replication da-

tasets. A spatial correlation between the two datasets was strongly positive for

both the relationship with drift rate (r = 0.613; R2 = 0.37; p = 10�11; Figure S3)

and non-decision time (r = 0.681; R2 = 0.46; p = 10�15; Figure S3), but the null

hypothesis could not be rejected for the diffusion boundary (p > 0.500).
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