Neurolmage 122 (2015) 399-407

journal homepage: www.elsevier.com/locate/ynimg

Contents lists available at ScienceDirect

Neurolmage

Estimation of dynamic functional connectivity using Multiplication of

Temporal Derivatives

@ CrossMark

James M. Shine >*, Oluwasanmi Koyejo °, Peter T. Bell ¢, Krzysztof ]. Gorgolewski °,

Moran Gilat 2, Russell A. Poldrack P

@ Parkinson's Disease Research Clinic, Brain and Mind Research Institute, The University of Sydney, NSW, Australia

b Department of Psychology, Stanford University, Stanford, CA, USA

ARTICLE INFO ABSTRACT

Articl? history: Functional connectivity provides an informative and powerful framework for exploring brain organization. De-
Received 15 February 2015 spite this, few statistical methods are available for the accurate estimation of dynamic changes in functional net-
Accepted 23 July 2015

work architecture. To date, the majority of existing statistical techniques have assumed that connectivity
structure is stationary, which is in direct contrast to emerging data that suggests that the strength of connectivity
between regions is variable over time. Therefore, the development of statistical methods that enable exploration
of dynamic changes in functional connectivity is currently of great importance to the neuroscience community. In
this paper, we introduce the ‘Multiplication of Temporal Derivatives’ (MTD) and then demonstrate the utility of
this metric to: (i) detect dynamic changes in connectivity using data from a novel state-switching simulation; (ii)
accurately estimate graph structure in a previously-described ‘ground-truth’ simulated dataset; and (iii) identify
task-driven alterations in functional connectivity. We show that the MTD is more sensitive than existing sliding-
window methods in detecting dynamic alterations in connectivity structure across a range of correlation
strengths and window lengths in simulated data. In addition to the temporal precision offered by MTD, we dem-
onstrate that the metric is also able to accurately estimate stationary network structure in both simulated and
real task-based data, suggesting that the method may be used to identify dynamic changes in network structure
as they evolve through time.
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Introduction

A recent paradigm shift in functional brain imaging has led to dra-
matic advances in our understanding of the functional organization of
the human brain. These advances place connectivity at the core of
brain organization and emphasize the fundamental importance of
inter-regional communication for global brain function (Bullmore and
Sporns, 2009). Given that functional connectivity provides an informa-
tive methodology for exploring brain organization, the development
and optimization of analytic methods to describe statistical relation-
ships between regions of the brain is currently of great importance to
the neuroscientific community (Hutchison et al., 2013).

To date, the vast majority of statistical techniques used to calculate
functional connectivity have assumed that the connectivity structure
is stationary through time. In direct contrast to this assumption, emerg-
ing methodologies have demonstrated that the strength of connectivity
between regions is highly dynamic, enabling the emergence and disso-
lution of transient functional repertoires through time (see Hutchison
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et al,, 2013 for review). Previous attempts to describe dynamic patterns
of functional connectivity have utilized two main approaches:
(i) estimation of pairwise variations in inter-regional covariance
(Allen et al., 2014; Chang and Glover, 2010; Handwerker et al., 2012;
Hutchison et al,, 2012; Jones et al.,, 2012; Kiviniemi et al., 2011;
Sakoglu et al., 2010; Zalesky et al., 2014), and (ii) the identification of
changing patterns of covariance at a multivariate level (Calhoun et al.,
2014; Cribben et al., 2012; Damaraju et al., 2014; Leonardi et al., 2013,
2014; Lindquist et al., 2007; Liu and Duyn, 2013; Magnuson et al.,
2010; Majeed et al.,, 2011; Robinson et al., 2014; Smith et al., 2012;
Tagliazucchi et al., 2012). Although these techniques have provided a
number of insights into the temporal dynamics of the brain, the
methods have generally been limited by a lack of appropriate temporal
resolution.

Here, we introduce and validate a novel metric, Multiplication of
Temporal Derivatives (MTD), that can be used to interrogate dynamic
functional connectivity in fMRI time series data. In the following, we
demonstrate the results of a three-part experiment — demonstrating
the ability of this novel metric to calculate dynamic and stationary func-
tional connectivity structure in both real and simulated data. In Experi-
ment 1, we utilize a novel simulation framework to assess the
sensitivity and specificity of MTD to detect switches in covariance
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structure within a simulated time series dataset. In Experiment 2, we
demonstrate that the metric also provides a robust method for describ-
ing stationary patterns of functional connectivity by comparing its per-
formance against common methodologies using a ‘gold-standard’
simulated dataset (Smith et al., 2011). In Experiment 3, we apply the
metric to a high-quality task-based dataset from the Human
Connectome Project (Barch et al.,, 2013) in order to demonstrate that
the method can identify task-driven changes in network reconfigura-
tion in real fMRI data. Together, the results of these highlight the poten-
tial of MTD in estimating dynamic and stationary functional
connectivity structure.

Methods
Multiplication of Temporal Derivatives

To estimate connectivity at each time point of functional neuroimag-
ing data using the MTD metric, we first calculate the temporal derivative
(dt) of each time series (ts) of length t by performing a first-order
differencing (i.e. subtracting the BOLD intensity at time point t — 1
from the intensity at time point t; see Eq. 1).

dty = tsi—tsie—1 (1)

Equation 1: the temporal derivative of node i at time t is calculated as
the temporal difference between the intensity of the signal at time t and
t — 1 atnode i.

For each of n nodes with t unique time points, we calculate a t — 1
vector of temporal derivative values, and then normalize each data
point by dividing each dt by the standard deviation (o) of the dt, calcu-
lated over the entire time course. To calculate the MTD score at each
time point, the dt for each pair of nodes ij are then multiplied, creating
at— 1 xnx nmatrix, in which the value in each cell reflects the degree
of functional coupling between the ith and jth nodes of the network (see
Eq. 2). Positive MTD scores thus reflect ‘coupling’ in the same direction
of signal change across nodes (that is, signal either both increasing or
both decreasing together), whereas negative scores reflect ‘anti-cou-
pling’ (that is, signal in one node increasing while the other is decreas-
ing). The mean MTD value can then be calculated over the course of an
entire experiment to estimate the stationary functional coupling be-
tween two nodes, i and j (see http://github.com/macshine/coupling/
for code).

(dti[ X dtj[)

MTDU[ - (Oi X Oj)

@)

Equation 2: Multiplication of Temporal Derivatives metric at time t
between nodes i and j.

Any method that estimates connectivity on a single data point will,
by definition, be more susceptible to fluctuations in high frequency
noise. For this very reason, there is currently debate in the literature
regarding the ideal window length to use for dynamic connectivity
analyses — long window lengths are relatively insensitive to rapid al-
terations in connectivity, whereas short windows are more susceptible
to fluctuations in high frequency noise (Leonardi and Van De Ville,
2015; Zalesky and Breakspear, 2015). In addition, methodological con-
siderations also play a role, as certain techniques (such as sliding win-
dow Pearson correlation analysis) require relatively large temporal
windows to improve estimates of covariance (Hutchison et al., 2013).
To assess the effect of window size in our experiment, we calculated
a simple moving average (SMA) of the MTD metric, such that data
are averaged surrounding a point in time within a window, w
(Eq. 3), a technique commonly employed in the literature when
using sliding window analyses (Hutchison et al., 2013). The window
length can then be flexibly manipulated depending on the nature of
the hypothesis being interrogated (i.e. short window lengths for

change points analysis and long window lengths for robust estimation
of positive covariance structure).

1 t+w

SMA;j = Wil > MTD 3)
t—w

Equation 3: simple moving average (SMA) of the Multiplication of
Temporal Derivatives (MTD) score for window length w over time t.

Experiment 1 — dynamic connectivity simulation

The primary goal of Experiment 1 was to compare the performance
of MTD against the primary method used for calculating dynamic func-
tional connectivity — sliding window Pearson's correlation coefficients
(SWPC) — using a novel simulated dataset. To do so, we compared the
sensitivity and specificity of MTD against the SWPC method across a
range of correlation thresholds and window-sizes. Importantly, the
use of a simulated dataset allowed us to systematically evaluate the sen-
sitivity and specificity of each technique, as we knew the ‘ground truth’
state of the functional connectivity in the simulated data.

Experiment 1a — sustained alterations in connectivity structure

To assess the capacity of MTD to estimate dynamic connectivity, we
performed a series of analyses using a novel simulation that used a
novel State Switching model (SSM) to generate realistic BOLD time
course data in which the connectivity ‘state’ between two regions
could be dynamically manipulated between two experimental states:
one involving no positive correlation between nodes (State 1), and an-
other with a positive correlations between nodes (State 2). At each
time point, the covariance structure between a pair of nodes was deter-
mined by a latent state variable, which evolved following a discrete dy-
namical model, with dynamics determined by a pre-defined state
transition switch (Baum and Petrie, 1966). At each time point, an obser-
vation vector was generated from a multivariate Gaussian distribution
with covariance associated with the hidden state (Eq. 4).

Xe ~ P(X|Z:,C) = N(X;0,Cz,) (4)

Equation 4: State Switching Model for simulation of time series data.

Where Z indexes states, X represents observations, and Cy is the
covariance associated with state Z.

As the State identity of each matrix was known from time point to
time point, we were able to evaluate the sensitivity and specificity of
the MTD in capturing dynamic switches in covariance structure. To do
so, we simulated the data using the state-switching model (SSM)
1000 times each across a range of correlation coefficients (Pearson's
r=0.1,0.2,0.3, 0.4 and 0.5) for two dynamic ‘switch’ scenarios. In the
first scenario, we created a single sustained switch from State 1 to
State 2. We then calculated an SMA of the MTD (Eq. 3) for the node-
pair over a range of window lengths (with the smallest window includ-
ing one time point either side of target point [i.e. a window length of 3
TRs; w = 1] and the largest encompassing 10 time points either
side of target point [i.e. a window length of 21 TRs; w = 10]). As a direct
comparison, we calculated SWPC, a widely utilized method for
exploring dynamic functional connectivity in the literature (Hutchison
et al., 2013), with the same range of variable window lengths (i.e.
w = 1-10), shifted sequentially by 1 TR to cover the entire time course.
Importantly, the two competing methods were aligned such that they
had access to identical data points for each simulation.

To directly compare the performance of the MTD and SWPC over the
range of window lengths, we used a ‘sliding window’ approach to assess
the data for significant differences in mean connectivity between the
two simulated nodes at each point in time. To achieve this, we per-
formed an independent-samples t-test comparing the 10 time points
prior to with the 10 time points following a given data point and then
‘slid’ this window across the time series. Therefore, at each point in
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the data, we obtained a t-statistic that reflected the likelihood that there
was a large deviation in the mean connectivity score (calculated using
either the MTD or SWPC) between the two windows surrounding
each point. By performing a negative log;, transform of the p-value
for each of the 1000 simulations, we were able to estimate the ‘confi-
dence’ of a switch occurring at a given data point. That is, high values
in the confidence measure, corresponding to small p-values, suggested
increased confidence that a switch occurred at that point in the data.
After standardizing this confidence measure within each window to
allow comparison across window lengths, we were able to create a mea-
sure that reflected the confidence that a switch occurred at a given data
point for each method that was directly comparable across the range of
windows and correlation strengths.

To further characterize the performance of the two metrics, we
calculated the sensitivity and specificity of each measure to accurately
detect the switch point: sensitivity was defined as the proportion of
simulations in which there was a significant confidence value (confi-
dence score >3.0, equivalent to p < 0.001) within 5 time points of a
switching event; and specificity was defined as the inverse of the
proportion of simulations in which there was a high confidence value
present in a window that did not involve any switch in correlation struc-
ture (i.e. comparing two windows with matching states). This latter
value reflects the extent to which the MTD or SWPC at a given window
length mistakenly identified data in State 1 as associated with positive
covariance structure (that is, State 2). Importantly, our objective was
to create a metric with high sensitivity to switch point detection, such
that the techniques were likely to be associated with a trade-off in spec-
ificity, the latter of which has recently been shown to be maximized
using multivariate volatility methods (Lindquist et al., 2014).

Experiment 1b — transient alterations in connectivity

In addition to detecting changes in connectivity structure (Experi-
ment 1a), it is also important for a dynamic connectivity metric to iden-
tify transient changes in connectivity (Experiment 1b), such as those
involved in an event-related fMRI design, in which behavioral variables
are presented rapidly and classically modeled as events with zero laten-
cy. To compare the effectiveness of the MTD and SWPC to estimate these
dynamic fluctuations, we created a transient switch from State 1 to State
2 lasting for a duration of six time points, the number of which was es-
timated to most realistically model the number of time points in which
a BOLD response from a single neural event would last in a typical fMRI
experiment with a TR of 1 s (i.e. 6 time points). We simulated data 1000
times across the same range of correlation coefficients as in the previous
experiment (r = 0.1-0.5) and subsequently calculated the SMA of
the MTD and the SWPC scores for the same range of window sizes
(w = 1-10). The confidence, sensitivity and specificity of each metric
were calculated as per Section Experiment 1 - dynamic connectivity
simulation, however, as the covariance structure shifted after six time
points, we only used six data points (as opposed to ten in the previous
analysis) per window for the sliding t-tests to increase temporal
precision.

Experiment 1c — effect of amplitude change on estimates of connectivity

One difficulty of interpreting functional connectivity results in the
context of external task demands is disentangling spurious increases
in connectivity that occur due to co-activation of neural regions by
task demands from underlying increases in task-related functional
connectivity. In order to mimic this scenario in a simulation, we added
1.0% signal intensity (a conservative estimate of the BOLD percent signal
change predicted from a standard block-design experiment) to two
time series that were otherwise not correlated with one another
(i.e. they were in State 1). We then calculated the MTD and SWPC
values for this data as per methods described in Section Experiment
1 - dynamic connectivity simulation. As there was no underlying posi-
tive covariance between the two nodes, we reasoned that a method

sensitive to actual changes in covariance but insensitive to alterations
in evoked responses should not detect a positive switch in this scenario.

Experiment 1d — effect of noise addition

There is an extensive literature detailing the negative effect of
spurious noise on the estimation of stationary functional connectivity
(e.g. see Power et al., 2012). However, there is less clarity regarding
the effect of noise on estimates of dynamic connectivity. To estimate
the possible adverse effects of spurious noise to both the MTD and
SWPC, we created two separate simulations. In the first simulation, we
simulated a range of low and high frequency noise signals by adding a
randomly phase-shifted sinusoid signal to the original data time series
(r = 0.3) at a range of frequencies (0.001, 0.02, 0.04, 0.06, 0.08, 0.10,
0.20 and 0.40 Hz) and then calculated the MTD and SWPC estimates
of covariance structure for w = 3.

Experiment 1e — effect of head motion

To estimate the global effects of motion, we added a series of global
signal spikes (1.0% signal intensity) to each time series randomly to a
proportion of time points (at the same point in each time series), vary-
ing the proportion from 1/n (i.e. one time point) up to 25% of the time
series. We then calculated the MTD and SWPC estimates of covariance
structure for w = 3. In both instances, we then compared the resultant
sensitivity and specificity of each trial to the value estimated from data
without noise added.

Experiment 1f — effect of filtering

In conventional sliding-window FC, it is common practice to apply a
high-pass filter to timeseries that has a cut-off about the reciprocal of
the window length (e.g., 100 s requires an 0.01 Hz HPF cut-off) to
avoid spurious fluctuations due to aliasing (for instance, see Leonardi
and van de Ville, 2015). To determine the extent to which the choice
of high-pass filter affected estimates of covariance, we ran a series of
simulations in which we altered the extent of high-pass filtering on
the original time series, using a range of filters (0.005, 0.006, 0.007,
0.008, 0.01 and 0.013 Hz) and then calculated the MTD and SWPC on
the resultant time series (r = 0.3 and w = 3). In addition, we also ran
a further simulation in which the data were band-pass filtered in a sim-
ilar to the window utilized for many resting state analyses (between
0.001 and 0.01 Hz). In a similar fashion to experiment 1d, the sensitivity
and specificity of each trial was then normalized to the value estimated
from data without filtering.

Experiment 2 — stationary network detection

In Experiment 2, our aim was to demonstrate that the MTD is able to
accurately estimate stationary connectivity structure in a well-
characterized fMRI dataset, demonstrating the capacity of the MTD to
capture meaningful patterns of dynamic changes in connectivity from
fMRI time series data. We achieved this aim by directly comparing the
performance of MTD against a variety of existing methods using a pre-
viously published gold-standard stimulated data set (Smith et al.,
2011), which was obtained from FMRIB (http://www.fmrib.ox.ac.uk/
analysis/netsim). Briefly, this dataset consists of 28 simulations of
BOLD data in 50 realizations (TR = 1.5-3 s; 200-1000 individual time
points; 5-50 nodes; and differing levels of noise and hemodynamic re-
sponse function variability). Each simulated dataset was created using
an fMRI forward model based on dynamic causal modeling (DCM;
(Friston et al., 2011)), combined with a nonlinear balloon model
(Buxton et al., 1998) to simulate vascular dynamics (see (Smith et al.,
2011) for details of the simulation). The authors simulated realistic
BOLD data with known network structure (i.e. ‘ground truth’), enabling
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the evaluation of a range of popular connectivity models to estimate the
‘ground truth’ network structure.

To test for the strength of functional connectivity, the authors calcu-
lated ‘c-sensitivity’, which was defined as the fraction of true positive
connectivity estimates (that is, the estimated connection strength be-
tween nodes that were connected in the true network) with a connec-
tivity strength greater than two standard deviations above the mean
of the estimated scores for edges that are not present in the true net-
work (that is, true negative connections). Smith and colleagues found
that strong methods performed at greater than 80% c-sensitivity, how-
ever there was a great deal of variability amongst the different simula-
tions. In this study, we applied the same evaluation criteria as (Smith
et al.,, 2011). We calculated the mean c-sensitivity for the entire group
using the MTD metric for each of the 28 simulations from the Smith
etal. (2011) dataset. For clarity, results are presented without the appli-
cation of SMA to MTD data, however c-sensitivity scores for the MTD
metric did improve substantially with the application of a SMA with
moderate window size (w = 3-4; see Fig. S1).

Experiment 3 — task-based functional connectivity

In the final experiment, we provide further validation of the poten-
tial utility of MTD by demonstrating that the metric is able to provide in-
sights into the functional organization of the brain using real fMRI time
series data. To assess task-based functional connectivity, preprocessed
data from 40 unrelated subjects collected while performing a visually-
based working memory task were downloaded from the Human
Connectome Project server (Glasser et al., 2013). Briefly, the task
consisted of interleaved blocks of a high and low load working memory
task (2-back and 0-back, respectively), paired with an object recogni-
tion task (four separate conditions: places, faces, body parts and
tools). In this experiment, we examined two contrasts: firstly, working
memory load was interrogated by comparing patterns of activity and
connectivity during all four ‘2-back’ blocks and all four ‘0-back’ blocks;
and secondly, the differential pattern of ‘face’ and ‘place’ object
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recognition was interrogated by comparing patterns during both high
and low load ‘face’ blocks with patterns during both ‘place’ blocks.

Preprocessing of timeseries data involved distortion correction and
linear head movement correction, following which all data was
projected onto two 32,492 vertex cortical sheets (one per hemisphere).
The mean time series was then extracted from each of 333 surface par-
cels (166 in the left hemisphere and 167 in the right hemisphere),
which were defined according to patterns of homogenous vertex-wise
stationary resting state connectivity (Gordon et al., 2014). To estimate
patterns of connectivity in a targeted fashion, the MTD metric was cal-
culated for a reduced set of 18 parcels (Fig. S3), which were identified
via reverse inference of the terms: ‘working memory’ (8 parcels),
‘faces’ (5 parcels) and ‘places’ (5 parcels) using the NeuroSynth data-
base (Yarkoni et al., 2011). A time series of the MTD score (w = 3, the
window length with the highest sensitivity, specificity and confidence
across a range of correlation strengths from our previous simulations;
see Sections 3.1.1 and 3.1.2) was calculated for each of the 153 unique
connections and then entered into a mixed-effects general linear
model analysis (Mumford and Poldrack, 2007) with task-onset regres-
sors from the working memory task using customized code implement-
ed in Python. Results from the mixed-effect analyses were visualized on
the cortical surface by performing a negative log,o transformation of the
corresponding p-value for each parcel-wise connection using the
Connectome Workbench toolbox (see Fig. S3).

Results
Experiment 1a — sustained alterations in connectivity

The MTD outperformed the conventional SWPC approach when de-
tecting dynamic switches in connectivity States in simulated timeseries
data (Fig. 1). When detecting a sustained switch in connectivity, the
MTD was associated with a higher degree of confidence in the switch
point across a range of correlation strengths (Fig. 1a), particularly

when using finer temporal window (w = 2-4; Table 1). Across all
simulations, the SWPC showed poorer discrimination of switch points,
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Fig. 1. Sustained alterations in covariance structure. The Multiplication of Temporal Derivatives (MTD; shown in blue) was able to detect the ‘switch’ between State 1, in which there was
no covariance structure (shown in white below the plot), and State 2, in which sparse covariance structure was present in the data (shown in black) with more precision than the sliding
window Pearson's correlation technique (SWPC; shown in red) across a range of connectivity strengths (top panel). Values reflect the mean connectivity strength (standardized to the
maximum estimated value of the correlation strength for each simulation) across all window lengths and all correlation strengths. The bottom panel shows the average ‘confidence’ in
the occurrence of a switch at a given point in the time series, averaged across window length and correlation strength. For both sustained switches (a) and transient switches (b), the
MTD was able to estimate alterations in connectivity with more precision, as evidenced by steeper gradients of change in correlation strength estimation (top panel) and change point

detection (bottom panel).
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Sensitivity and Specificity values for sustained shifts in correlation using both the Multiplication of Temporal Derivatives and Sliding Window Pearson's Correlation across a range of cor-

relation strengths (r = 0.1 — 0.5) and window lengths (w = 1 — 10).

Window (w) r=0.1 r=202 r=03 r=04 r=205
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Multiplication of Temporal Derivatives
1 0.40 0.94 0.48 0.94 0.52 0.95 0.58 0.94 0.62 0.93
2 0.59 0.85 0.64 0.84 0.74 0.84 0.77 0.85 0.81 0.83
3 0.69 0.78 0.75 0.77 0.81 0.80 0.86 0.77 0.88 0.74
4 0.75 0.72 0.80 0.71 0.87 0.70 0.91 0.71 0.91 0.69
5 0.76 0.70 0.81 0.69 0.87 0.69 0.91 0.68 0.93 0.67
6 0.75 0.70 0.80 0.68 0.87 0.68 0.90 0.68 0.93 0.67
7 0.73 0.70 0.79 0.69 0.85 0.69 0.90 0.67 0.93 0.67
8 0.71 0.71 0.78 0.70 0.84 0.70 0.90 0.67 0.92 0.69
9 0.70 0.71 0.77 0.69 0.85 0.69 0.89 0.68 0.92 0.69
10 0.69 0.70 0.78 0.69 0.84 0.69 0.90 0.68 0.92 0.69
Sliding window Pearson's correlation
1 0.28 0.97 0.35 0.97 0.38 0.96 0.44 0.97 0.46 0.94
2 0.50 0.89 0.6 0.89 0.67 0.89 0.73 0.89 0.77 0.85
3 0.64 0.83 0.71 0.82 0.79 0.81 0.84 0.80 0.89 0.77
4 0.71 0.76 0.79 0.76 0.85 0.76 0.89 0.75 0.93 0.71
5 0.74 0.73 0.81 0.74 0.87 0.73 0.91 0.71 0.95 0.68
6 0.74 0.72 0.81 0.73 0.86 0.71 0.92 0.70 0.96 0.68
7 0.74 0.72 0.81 0.72 0.86 0.72 0.92 0.71 0.96 0.67
8 0.70 0.72 0.8 0.72 0.86 0.73 0.91 0.70 0.96 0.67
9 0.70 0.72 0.81 0.73 0.86 0.72 0.91 0.69 0.96 0.68
10 0.69 0.72 0.8 0.72 0.87 0.73 0.91 0.69 0.96 0.68

consistently predicting switches earlier than they occurred and for
longer periods of time (Fig. 1a). This relative lack of precision was also
evidenced by a decreased sensitivity to the switch point in the SWPC
method compared to the MTD (Table 1), however the MTD was associ-
ated with a slight decrease in specificity over the range of simulations
(Table 1). Across the range of window lengths, a SMA using w = 3
struck the most effective balance between high sensitivity and specific-
ity (Table 1).

Experiment 1b — transient alterations in connectivity
Across the range of correlation coefficients, the MTD showed a con-

sistently higher sensitivity to transient alterations in connectivity than
the SWPC analysis (Fig. 1b), albeit with a similar small tradeoff in

specificity (Table 2). In a similar fashion to the sustained alterations in
connectivity, a window length of 3 (i.e. 7 total time points) consistently
provided the most effective balance of high sensitivity and specificity
(Table 2).

Experiment 1c¢ — effect of amplitude change on estimates of connectivity

The results of our final dynamic simulation show an important cir-
cumstance in which the estimates of connectivity from the MTD and
SWPC differ in their estimates of dynamic connectivity. Although
there was no underlying positive connectivity structure between the
two nodes, the targeted addition of an evoked response (modeled by
an increase in signal amplitude) led to a large, sustained increased in
the estimation of connectivity using the SWPC approach across all

Table 2

Sensitivity and Specificity values for transient shifts in correlation using both the Multiplication of Temporal Derivatives and Sliding Window Pearson'’s Correlation across a range of cor-
relation strengths (r = 0.1 — 0.5) and window lengths (w = 1 — 10).

Window (w) r=0.1 r=202 r=03 r=04 r=205

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
Multiplication of Temporal Derivatives
1 0.40 0.95 0.42 0.94 0.41 0.95 0.49 0.94 0.55 0.94
2 0.67 0.82 0.69 0.79 0.71 0.82 0.78 0.81 0.80 0.82
3 0.72 0.76 0.74 0.75 0.75 0.76 0.81 0.74 0.84 0.76
4 0.68 0.77 0.73 0.76 0.74 0.76 0.80 0.75 0.82 0.79
5 0.68 0.79 0.72 0.78 0.72 0.77 0.80 0.77 0.81 0.79
6 0.69 0.78 0.73 0.79 0.70 0.77 0.80 0.78 0.81 0.79
7 0.69 0.78 0.73 0.79 0.69 0.77 0.79 0.78 0.80 0.78
8 0.70 0.79 0.72 0.79 0.66 0.78 0.78 0.79 0.78 0.78
9 0.69 0.79 0.71 0.79 0.63 0.76 0.75 0.78 0.77 0.77
10 0.69 0.78 0.69 0.78 0.63 0.76 0.75 0.78 0.73 0.79
Sliding window Pearson's correlation
1 0.29 0.96 0.30 0.96 0.27 0.96 0.37 0.97 0.41 0.96
2 0.56 0.87 0.56 0.87 0.56 0.88 0.67 0.87 0.73 0.89
3 0.66 0.83 0.67 0.81 0.66 0.82 0.77 0.82 0.81 0.84
4 0.65 0.83 0.70 0.82 0.68 0.82 0.77 0.82 0.82 0.83
5 0.65 0.81 0.68 0.82 0.69 0.81 0.77 0.81 0.78 0.84
6 0.66 0.82 0.69 0.82 0.66 0.80 0.78 0.82 0.79 0.82
7 0.66 0.82 0.70 0.81 0.66 0.80 0.75 0.82 0.78 0.82
8 0.66 0.82 0.68 0.81 0.63 0.81 0.72 0.82 0.76 0.82
9 0.64 0.82 0.69 0.82 0.63 0.81 0.70 0.82 0.74 0.81
10 0.65 0.81 0.65 0.81 0.60 0.80 0.69 0.81 0.72 0.81
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Table 3
Effect of noise addition and removal.
MTD SWPC
Sensitivity Specificity Sensitivity Specificity

Raw time series
w=3 0.81 0.80 0.77 0.80
Sinusoid waves (Hz)
0.001 0.81 0.80 0.78 0.80
0.02 0.81 0.80 0.68 0.80
0.04 0.81 0.80 0.65 0.80
0.06 0.79 0.80 0.62 0.80
0.08 0.77 0.80 0.57 0.80
0.1 0.78 0.80 0.55 0.80
0.2 0.66 0.80 0.53 0.80
0.4 0.71 0.76 0.36 0.80
Head motion spikes
1% 0.82 0.80 0.77 0.80
5% 0.81 0.80 0.76 0.80
10% 0.80 0.80 0.73 0.80
15% 0.77 0.79 0.72 0.79
20% 0.76 0.78 0.68 0.79
25% 0.74 0.76 0.63 0.79
High-pass filtering
0.005 0.81 0.80 0.77 0.80
0.006 0.81 0.80 0.77 0.80
0.007 0.81 0.80 0.77 0.80
0.008 0.81 0.80 0.77 0.80
0.010 0.81 0.80 0.77 0.80
0.013 0.81 0.80 0.77 0.80
Band-pass filtering
0.001-0.1 0.90 0.80 0.77 0.80

The effect of noise addition to the sensitivity and specificity of the Multiplication of Tem-
poral Derivatives (MTD) and Sliding Window Pearson's Correlation (SWPC) values. Values
reflect the sensitivity and specificity of each metric at r = 0.3 and w = 3, normalized
against the values obtained for data without additional noise. We simulated four scenarios
associated with noise: a) randomly phase-shifted sinusoid waves at a range of frequencies
were added to the data to simulate low and high frequency noise; b) random fixed-ampli-
tude ‘spikes’ were added to the data at different proportions to simulate sporadic head
motion; c) data were high pass filtered at different frequencies (ranging from 0.005-
0.13 Hz); and d) data were band pass filtered between 0.001 and 0.1 Hz, in order to sim-
ulate a preprocessing strategy common to resting state data analysis. The MTD was more
resistant to the addition of sinusoidal noise than the SWPC across a range of frequencies.
Unsurprisingly, both methods were susceptible to decreased accuracy with extensive
head motion, however the MTD was more robust to this phenomenon at the mid-range
(5-15%). High-pass filtering did not have a measurable effect on either measure, although
band pass filtering improved the sensitivity of the MTD to change-point detection, possi-
bly due to the removal of high-frequency noise from the data.

window lengths (Fig. 3). In contrast, the MTD was relatively insensitive
to this change in the data, only estimating a change in connectivity in
small window lengths (w = 1), although the effects were relatively

Table 4
Task-based connectivity results.
Contrast Seed Target P value
2-back
L DLPFC (108) L Lat vOcc (136) 0.001
R DLPFC (236) R_Med_vOcc (298) 0.001
R DLPFC (236) L vOcc (229) 0.003
L DLPFC (108) L vOcc (229) 0.004
LPPC (51) L Lat vOcc (136) 0.017
R DLPFC (236) L Lat Occ (98) 0.025
Faces
RPPC (211) L Lat vOcc (136) 0.005
Places
R DLPFC (236) L vOcc (229) 0.002
R DLPFC (273) R Med vOcc (299) 0.007

Numbers in parentheses represent the parcel identification number associated with each
region and p-values reflect the results from a mixed-effects general linear model analysis.
Key: DLPFC — dorsolateral prefrontal cortex; PPC — posterior parietal cortex; Lat — lateral;
Med — medial; vOcc — ventral occipital cortex; Occ — occipital cortex.

transient. These results suggest that the MTD is more resilient to
spurious correlations driven by task-induced co-activation of otherwise
independent nodes.

Experiment 1d — effect of noise addition

The addition of sinusoidal noise across a range of frequencies led to
marked detriment in the performance of the SWPC, particularly with
high frequency noise (Table 3). In contrast, the MTD was relatively
impervious to the additional of sinusoidal noise, only displaying a deficit
in change-point detection with relatively high frequency noise (0.2 and
0.4 Hz).

Experiment 1e — effect of head motion

Both methods showed decreased accuracy with extensive head mo-
tion (20-25% of trial with sporadic global ‘spikes’), however the MTD
was more robust to this phenomenon at the mid-range (5-15%;
Table 3). Importantly, both the MTD and SWPC were able to detect a rel-
ative difference between State 1 and State 2 in the highest noise states.

Experiment 1f — effect of filtering

The choice of high-pass filtering threshold did not have a measur-
able effect on either the MTD or SWPC, which may be due to the fact
that the temporal differencing of the time series acts like a HPF (see
Fig. S4). In contrast, band pass filtering improved the sensitivity of the
MTD to change-point detection, possibly due to the removal of high-
frequency noise from the data (Table 3).

Experiment 2 — stationary network detection

The MTD metric was associated with a mean c-sensitivity of
0.76 +/— 0.2 (see Fig. S2), which was greater than the mean
c-sensitivity achieved by the methods reported in Smith et al
(0.63 +/— 0.2; t = 6.7, p < 0.001), but not as sensitive as the best
methods (0.86 +/— 0.2). Importantly, the functional coupling metric
defined at the individual level performed excellently in the first four
simulations (0.92 +/— 0.1), which were designed to reflect ‘normal’ pa-
rameters used in 3 T fMRI BOLD imaging experiments. The MTD metric
also performed well with respect to common issues associated with
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Fig. 2. Effect of amplitude change on estimates of dynamic connectivity. The addition of a
1% amplitude change (shown in gray below the graph) to the signals that did not other-
wise share any covariance structure (i.e. State 1; shown in white) was associated with a
large increase in estimated functional connectivity by the average sliding window
Pearson's correlation (SWPC). In contrast, the average Multiplication of Temporal Deriva-
tives (MTD) metric did not estimate significant alterations in connectivity during this per-
turbation. This example highlights the insensitivity of the MTD to correlations that are
driven by task transients, which have long been noted as a problem for functional connec-
tivity (e.g. Friston, 1994). Values reflect the mean connectivity strength (standardized to
the maximum estimated value of the correlation strength for the r = 0.5 simulations)
across all window lengths and all correlation strengths.
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fMRI data time series, which were shown to be problematic for several
other measures of functional connectivity (Fig. S2). Overall, the MTD
metric displayed similar c-sensitivity scores to the full Pearson's correla-
tion (mean c-sensitivity: 0.70), perhaps unsurprising due to the formal
similarity between two metrics. The MTD metric did not perform as well
as partial correlation (mean c-sensitivity: 87.9 4+/— 16%), or sparse in-
verse covariance (mean c-sensitivity: 87.6 +/— 17%), however the
method did out-perform the majority of methods tests across the
range of simulations (mean c-sensitivity: 63.1 +/— 17%), suggesting
that the MTD can be used as a tool for estimating static connectivity
structure in fMRI time series data. Overall, these results suggest that
this method is a useful alternative for estimating undirected static
graph structure in BOLD time series data.

Experiment 3 — task-based connectivity

During blocks of high working memory load, we observed a number
of significant patterns of task-based functional connectivity when using
the MTD (Table 4 and Fig. 3). During blocks of high versus low cognitive
load, we observed an increase in functional connectivity between the bi-
lateral dorsolateral prefrontal cortex and the ventral occipital cortex
(Fig. 3a), consistent with the visual nature of working memory task. In
addition, there was also increased coupling between the posterior
parietal cortex and ventral occipital cortex, as well as functional anti-
coupling between the bilateral ventral occipital cortices. When
contrasting patterns of face versus place recognition, we observed
preferential connectivity between frontoparietal cortical regions and
the ventral occipital regions responsible for the processing of either
face-related (lateral) or place-related (medial) information (Fig. 3b).

Discussion

In this manuscript, we have: (i) introduced the Multiplication of
Temporal Derivatives (MTD) metric as an alternative method for calcu-
lating dynamically evolving statistical relationships between nodes
using BOLD time series data; (ii) demonstrated the utility of this novel
functional coupling metric in detecting dynamic changes in connectivity
over time using a novel simulated dataset; (iii) demonstrated that this
metric can accurately estimate network structure in a previously
described ‘ground-truth’ simulated dataset (Smith et al., 2011); and
(iv) demonstrated the utility of the metric in detecting significant
patterns of task-based functional connectivity in a high-quality dataset.
Together, these results suggest that the functional coupling metric may
be applied to functional neuroimaging data to interrogate patterns of
connectivity across space and time.

A major advantage of the MTD technique lies in the superior tempo-
ral sensitivity to dynamic changes in connectivity structure compared to
existing methods (see Figs. 1 & 2; Tables 1 and 2). Using data simulated
using a State-Switching Model, we have demonstrated that the simple
moving average of the MTD metric detects ‘switches’ in connectivity
states with a higher sensitivity than SWPC analysis (Fig. 1a & Table 1).
In addition, the MTD metric was more resilient to the introduction of
signals intended to mimic the presence of task-related transient in-
creases in BOLD signal (modeled by increasing the amplitude of signal
fluctuations; Fig. 2), suggesting that the method may be more resistant
to spurious correlations between independent regions that are coinci-
dentally co-activated during task performance, which have long been
noted as a problem for functional connectivity (e.g. Friston et al.,
1994). Finally, the MTD was also able to detect transient changes in
weak covariance structure with higher sensitivity than SWPC (Fig. 1b
& Table 2), suggesting that the MTD can be applied to task-based data
with high sensitivity to changes in correlation strength over time. Al-
though there may be a theoretical risk that temporal derivatives (such
as those used to estimate dynamic connectivity in the MTD; Eq. 2)
might amplify noise in the data, our simulations provide strong evi-
dence that with an appropriate window size (w), this is not the case.

Fig. 3. Task-based functional coupling. Task-based functional coupling: a) During the per-
formance of a visually based working memory task, we observed significant functional
coupling between key frontoparietal regions (shown in blue) and ventral occipital cortical
regions specialized for either the recognition of faces (orange) or places (yellow). Specif-
ically, periods of high cognitive load, irrespective of visual object, were associated with a
preferential increased coupling between the bilateral dorsolateral prefrontal cortex and
the ventral occipital cortex, along with parieto-occipital coupling and inter-hemispheric
anti-coupling between the ventral occipital cortex; b) The recognition of faces was pre-
dominantly associated with increased coupling between the dorsolateral prefrontal cortex
and the lateral ventral occipital cortex, as well as within the lateral ventral occipital cortex
(shown as a dotted line). In contrast, the recognition of places was associated with in-
creased coupling between the lateral frontal cortex and the medial ventral occipital cortex
(solid lines). p < 0.001 (survived correction for multiple comparisons using FDR p < 0.05).

Specifically, the MTD was more robust to the addition of high and low
frequency noise (Experiment 1d) and was also more robust to the spu-
rious effects of head motion (Experiment 1e). Together, these analyses
suggest that the MTD has the potential to interrogate dynamic alter-
ations in functional connectivity. Together, these results highlight the
utility of the MTD in estimating dynamic connectivity, but also suggest
that existing dynamic connectivity work in which correlations are esti-
mated using relatively long time windows (on the order of 30-45 time
points), may be insensitive to important fluctuations in connectivity
structure, although it bears mention that long windows demonstrate
an improvement in specificity, particularly using the SWPC technique
(Tables 1 and 2). Importantly, recent work has questioned whether dy-
namic alterations in connectivity can indeed be appropriately estimated
using current models (Lindquist et al., 2014) and as such, future exper-
iments should seek to clarify the nature of dynamic alterations in con-
nectivity in a wide range of real fMRI data. An alternative approach
could utilize wavelet transformation to separate data into different fre-
quency sub-bands, with different estimates of connectivity calculated
on each resultant sub-band (Achard et al, 2006). Indeed, it will be inter-
esting to determine whether connectivity estimates created with the
MTD method will be qualitatively similar to estimates of connectivity
created using wavelet transformed data.

Although the MTD and SWPC are based on similar mathematical
estimates of covariance over time, there are important differences
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between the two methods. For instance, the MTD shows a higher sensi-
tivity to subtle alterations in connectivity structure (Fig. 1), possibly due
to an increased sensitivity to small changes in signal over time afforded
by the calculation of the first temporal derivative of the time series,
which acts like a HPF (see Fig. S4). In addition, as SWPC are calculated
on demeaned data, the SWPC technique will necessarily over-estimate
patterns of connectivity in circumstances where two independent re-
gions show similar increases in signal amplitude, such as in task-based
experiments where two independent regions may be coincidentally
co-activated by task demands (Fig. 2). These results have important im-
plications for estimates of functional connectivity between brain re-
gions in task-based experiments, where external manipulations may
independently drive increased activity in neural systems that them-
selves are not effectively communicating with one another (e.g.
Friston et al., 1994). Together, these results suggest that by using con-
ventional methods, such as SWPC, researchers may potentially be de-
tecting spurious changes in covariance structure within networks as
identified by task-based fMRI. However, further experiments are re-
quired to determine whether such circumstances occur in a meaningful
way during the resting state (e.g. during ‘switches’ in internal states
(Allen et al.,, 2014; Gorgolewski et al., 2014)).

In addition to providing increased sensitivity to dynamic alterations
in connectivity, the MTD was also able to robustly estimate undirected
network structure across a wide range of parameters in a ‘gold-
standard’ simulated dataset (Smith et al.,, 2011). In particular, the MTD
performed extremely well when analyzing imaging parameters com-
monly used amongst modern functional MRI experiments (i.e. 5-50
nodes, 10 min scan time, mean signal-to-noise ratio), suggesting that
the MTD provides an accurate measure for assessing functional connec-
tivity over the course of a resting state session. Together, these results
suggest that, in addition to providing temporal sensitivity, the MTD is
also able to effectively estimate the presence or absence of significant
network edges over longer periods of time.

An important application of the MTD is its ability to estimate task-
based functional connectivity. By combining the functional coupling
metric with a high-quality working memory task dataset from the
Human Connectome Project (Barch et al., 2013), we were able to
demonstrate robust patterns of task-based connectivity during 2-back
versus 0-back blocks in a visually based working memory task
from the Human Connectome Project (Fig. 3a). Interestingly, the
MTD also discovered separable patterns of task-based connectivity be-
tween frontoparietal regions and both medial and lateral ventral
occipitotemporal cortex (Fig. 3b), which are thought to be selective for
the processing of faces and places, respectively (Bell et al., 2009;
Kriegeskorte et al., 2007, 2008). These results are strongly aligned
with previous hypothetical (Gazzaley and Nobre, 2012; Ranganath
and D'Esposito, 2005) and neuroimaging work (Axmacher et al., 2008;
Zanto et al,, 2011), providing evidence that effective visual working
memory performance involves the flexible reconfiguration of select
nodes with frontoparietal and visual networks. Despite these promising
results, further work is required to determine the most efficient task-
design for estimation of dynamic patterns of connectivity, as designs
classically used to estimate dynamic patterns of neural activity (e.g.
event related potentials in electrophysiology) bear little resemblance
to the rapid event-related designs currently favored by many fMRI ex-
periments. In addition, it is not clear whether the low pass filter of the
BOLD response would render such experiments ineffective, irrespective
of task design. Despite these potential issues, the simulation experiment
provides evidence that the MTD contains is useful as a tool for dynami-
cally exploring patterns of covariance across time series.

The combination of high temporal sensitivity, effective network
edge detection and ease of computation suggest a number of other
potential uses for the MTD in the neuroscience literature. For instance,
the MTD could be combined with resting state data and a model-free
clustering approach in an attempt to detect unique ‘states’ within pat-
terns of brain connectivity (e.g. Allen et al., 2014; Calhoun et al., 2014;

Damaraju et al.,, 2014; Yang et al., 2014). The MTD could also be used
in combination with graph-theoretical metrics in an effort to describe
the functional connectome as it evolves over time (Bullmore and
Sporns, 2009). Alternatively, the MTD could be combined with task
data (as shown above) to estimate task-related connectivity, similar to
a Psychophysiological Interaction analysis (Friston et al., 1997). Indeed,
the ability to represent the functional connectivity between two regions
over time into a single vector provides an avenue for interesting ques-
tions, including the manner in which patterns of connectivity interact
with one another over time, potentially allowing for a higher level of
description of dynamic neural interaction that is currently under-
explored. Finally, the MTD could be used to test hypotheses relating to
functional connectivity impairments in patient cohorts, both in
resting-state and task data (e.g. see Shine et al., 2013).

There is currently debate in the literature regarding the principled
choice of window length for dynamic estimates of connectivity using
BOLD fMRI. Using simulated data, Leonardi and Van De Ville (2015)
have proposed that the minimum window for estimating connectivity
should be larger than the reciprocal of the slowest frequency
component in the signal of interest (for instance, using a 0.01 Hz filter
for data fluctuating once every 100 s). In response, Zalesky and
Breakspear (2015) have since demonstrated that although temporal
windows of greater than 1/f;,,;, maximize statistical power, temporal
windows of this duration may be over conservative in moderate signal
to noise conditions. This is an important finding, as most published
works in the field have utilized a sliding window approach with a win-
dow length of approximately 30-40 s (e.g. Allen et al., 2014; Yang et al.,
2014; Zalesky et al., 2014). In this manuscript, we have shown that both
the MTD and SWPC can effectively estimate alterations in connectivity
using much smaller windows than currently employed in the literature,
with the MTD showing the highest sensitivity to abrupt changes in co-
variance in small windows (Fig. 1). In addition, we have shown that
the MTD is relatively robust to both low and high frequency noise
(Experiment 1d) and is not adversely affected by the choice of high-
pass filter (Experiment 1f). Together, these results suggest that dynamic
patterns of functional connectivity can be interrogated in much smaller
windows than currently applied in the neuroimaging literature.

Conclusion

Together, the results our experiments suggest that the MTD provides
a robust and powerful method for estimating patterns of dynamic func-
tional connectivity and network structure in multivariate time series
data. There are a number of obvious benefits and utilities for this meth-
odology, which will help to clarify the precise dynamic relationship be-
tween neural regions in both rest and task-based experiments and assist
in the definition of the brains' functional connectome. Future experi-
ments could potentially combine the MTD with multivariate volatility
methods (Lindquist et al., 2014) or metrics that calculate connectivity
based on patterns of coincident supra-threshold activity (Chen et al.,
2015) to help improve the sensitivity of estimations of functional
connectivity in both simulated and real fMRI data, which in turn will
help to solidify our understanding of the dynamic interactions between
neural regions that define the functioning of the human brain.
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