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Abstract

The study of resting-state networks provides an informative paradigm for understanding the functional architec-
ture of the human brain. Although investigating specialized resting-state networks has led to significant advances
in our understanding of brain organization, the manner in which information is integrated across these networks
remains unclear. Here, we have developed and validated a data-driven methodology for describing the topogra-
phy of resting-state network convergence in the human brain. Our results demonstrate the importance of an en-
semble of cortical and subcortical regions in supporting the convergence of multiple resting-state networks,
including the rostral anterior cingulate, precuneus, posterior cingulate cortex, posterior parietal cortex, dorsal
prefrontal cortex, along with the caudate head, anterior claustrum, and posterior thalamus. In addition, we
have demonstrated a significant correlation between voxel-wise network convergence and global brain connec-
tivity, emphasizing the importance of resting-state network convergence in facilitating global brain communica-
tion. Finally, we examined the convergence of systems within each of the individual resting-state networks in the
brain, revealing the heterogeneity by which individual resting-state networks balance the competing demands of
specialized processing against the integration of information. Together, our results suggest that the convergence
of resting-state networks represents an important organizational principle underpinning systems-level integration
in the human brain.
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Introduction

Recent technological and conceptual advances in
Systems Neuroscience have led to sophisticated de-

scriptions of the connectional organization of the human
brain (Sporns, 2011). At the macroscopic scale, the human
brain is organized into large-scale networks. Although these
networks were originally discovered during analysis of the
‘‘resting’’ brain (Beckmann et al., 2005), similar patterns of
coordinated activity are also consistently detected across a
wide variety of task domains (Cole et al., 2014; Laird et al.,
2013; Smith et al., 2009), suggesting that the investigation
of resting-state networks can provide fundamental insights
into the functional architecture of the human brain (Buckner
et al., 2013).

The neuronal networks that comprise the human brain share
a number of connectional properties that minimize energy re-
quirements and maximize the ability to broadcast information
(Bullmore and Sporns, 2009). Indeed, specialization within
modular networks alone cannot support global cognitive func-

tion and must be balanced against the competing processing re-
quirement to integrate and unite this information to support
coherent cognitive operations (Fox and Friston, 2012; Tononi
et al., 1994). Although mechanisms underpinning neural inte-
gration are currently an area of investigation (Sporns, 2013), it
is not yet clear how specialized neural systems integrate and
disseminate information.

Several neuroimaging studies have begun to character-
ize neural regions that are likely to participate in multiple
resting-state networks (Braga et al., 2013; Leech et al., 2011;
Power et al., 2013; van den Heuvel and Sporns, 2013; Yeo
et al., 2013), offering novel insights into how neural signals
might be integrated across specialized modules in the human
brain. Pioneering graph analytic work by van den Heuvel
and Sporns (2013) employed a combination of high-resolution
structural tractography and resting-state functional magnetic
resonance imaging (fMRI) to demonstrate that an anatomical
core of highly central, densely interconnected, and metaboli-
cally expensive neural regions—the so-called ‘‘rich-club’’—
is likely implicated in the integration of information across
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resting-state networks. In addition, several other recent studies
have begun to emerge (Braga et al., 2013; Power et al., 2013;
Yeo et al., 2013), providing an initial glimpse into the possible
candidate architecture involved in systems-level integration in
the brain.

Although the results from this recent work support the im-
portance of an assembly of interconnected neural regions in
systems-level integration, there remains ongoing debate re-
garding the precise neuronal architecture involved in inter-
modular communication [e.g., see Power et al. (2013) and
Warren et al. (2014)] and how this architecture might con-
tribute to the global brain communication. In addition, the
contribution of subcortical structures in large-scale network
communication has been relatively poorly described to
date. Furthermore, although recent studies have implicated
several candidate regions in resting-state network communi-
cation (Braga et al., 2013; Power et al., 2013; van den Heuvel
and Sporns, 2013; Yeo et al., 2013), the extent and hetero-
geneity of large-scale network convergence across the topo-
graphy of the cerebrum is not yet clear.

The motivations behind this study were threefold: (1) to de-
velop a new method for estimating the functional architecture
involved in systems-level integration [to complement exist-
ing graph analytic descriptions of multiple-network participa-
tion, e.g., Power et al. (2013)]; (2) to characterize large-scale
network convergence in subcortical structures including the
basal ganglia, thalamus, and cerebellum; and (3) to further de-
scribe the extent and heterogeneity of multiple-network
membership across the topography of the brain. To achieve
these aims, we have developed and validated a methodology
for investigating patterns of large-scale network convergence
across the topography of cortical and subcortical structures.
In addition to whole-brain descriptions of network conver-
gence, we also provide a series of novel convergence maps
that characterize the topography of network convergence
within each of the individual cortical and subcortical net-
works, offering new perspectives regarding the topography
by which individual networks differentially balance the com-
peting demands of specialized processing against integration
of information across networks.

Methods

Overview

The overarching goal of this experiment was to character-
ize the topographic architecture supporting large-scale net-
work convergence in the human brain. To achieve this aim,
we utilized a combination of spatial independent component
analysis (ICA) and a graph theoretical connectivity measure
to explore patterns of large-scale network convergence.

Image acquisition and preprocessing

Data from 100 healthy adults (mean age = 21.4 years; 63%
female) were obtained from the Cambridge dataset in the
1000 Functional Connectomes data repository (Biswal
et al., 2010). Imaging was conducted on a General Electric
3T MRI (General Electric). T2*-weighted echo planar func-
tional images were acquired in sequential order with repeti-
tion time = 3000 msec, echo time = 32 msec, flip angle = 900,
47 axial slices covering the whole brain, field of view = 220
mm, and raw voxel size = 3 · 3 · 3 mm thick, 119 TRs (scan

time = 420 sec). High-resolution 3D T1-weighted, anatomi-
cal images (voxel size 1.2 mm isotropic) were obtained for
co-registration with functional data. Resting-state functional
images were collected on participants with their eyes closed.

Statistical parametric mapping software (SPM8) was used
for image preprocessing, according to a standard pipeline:
(1) scans were slice-time corrected to the median (21st)
slice in each repetition time; (2) scans were then realigned
to create a mean realigned image while estimates of six de-
grees of head movement were calculated for later use; (3)
a 7th-degree B-spline was used for interpolation; (4) images
were normalized to the echo planar image template; and (5)
scans were then smoothed using an 8-mm full-width at half
maximum isotropic Gaussian kernel.

Spatial ICA

Preprocessed images were subjected to two separate group-
level spatial ICA using the GIFT toolbox (Calhoun et al., 2001)
in SPM8, one for the Discovery sample (n = 50), and one for
the Replication sample (n = 50). Briefly, spatial ICA is a
data-driven approach that searches for maximally independent
clusters of voxels within the brain that co-vary together in re-
liable temporal relationships (Calhoun et al., 2001). Using the
GIFT toolbox, this process involves data reduction using prin-
ciple component analysis, followed by spatial ICA and finally,
a back projection step to re-create individual subject maps for
each component (Calhoun et al., 2001).

The Discovery cohort and the Replication cohort were
analyzed separately using the InfoMax algorithm in the
GIFT toolbox (Calhoun et al., 2001). In both the Discovery
cohort and the Replication cohort, the minimum description
length criterion was used to estimate the number of inde-
pendent components, and it was found to be 16 in both
groups. For both the Discovery and Replication cohort data-
sets, the 16 components were then examined for the pres-
ence of artifactual noise (i.e., spatial patterns associated
with the ventricular system, white matter, or the edges of
the brain). In both the Discovery cohort and the Replication
cohort, a total of three artifactual components were identi-
fied and thus discarded from further analysis. Therefore,
13 nonartifactual independent components were identified
in both the Discovery cohort (Fig. 1) and the Replication co-
hort, the number of which is consistent with findings from
fully exploratory ICA in 1000 individuals (Kalcher et al.,
2012).

The components identified in this study were the Sensori-
motor component (SM), Visual component (VIS), Temporal
lobe component (TEMP), Thalamic component (THAL),
Brainstem component (BS), Basal Ganglia component
(BGN), Cerebellar component (CBM), Left (LFPN) and
Right (RFPN) Lateralized Frontoparietal Network com-
ponents, Ventral Attention Network component (VAN),
Dorsal Attention Network component (DAN), Precuneus
component (PCU), and Default Mode Network component
(DMN). See Fig. 1 for visualization of the group-level net-
work components extracted in the Discovery cohort. Impor-
tantly, the spatial components extracted from the Discovery
cohort and the Replication cohort showed strong spatial
overlap (Pearson’s r > 0.500, p < 0.001 for each component
comparison). In addition, for each component, spatial sorting
using the component defined in the Discovery group reliably
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identified the corresponding spatial component in the Repli-
cation group.

Estimation of resting-state network convergence

The subsequent analyses were applied to both the Discov-
ery cohort and the Replication cohort separately (see Supple-
mentary Methods: Reproducibility of estimates of network
convergence in an independent Replication cohort; Supple-
mentary Data are available online at www.liebertpub.com/
brain). Spatial maps representing each of the 13 non-
artifactual components for each individual subject were en-
tered into separate random effects analyses (one for each
component) at the group-level using SPM8 software. These
group-level spatial maps were then thresholded statistically
at p < 0.001 (corrected for multiple comparisons using a false
detection rate [FDR] of p = 0.01), leading to the extraction of
a binary mask for each of the 13 network components, re-
spectively. After extracting only voxels that existed with a
standard gray matter mask from the WFU Pick Atlas toolbox
(Maldjian et al., 2003), we created a novel spatial conver-
gence map by amalgamating each of these 13 binary com-
ponent maps together in the same topographic space,
allowing the calculation of a network convergence metric
(NCM) at each voxel of the brain (Eq. 1). As such, the NCM
calculated at each individual voxel in the group-level con-
vergence map represents the number of maximally inde-
pendent resting-state networks that converge at the specific
brain voxel. Importantly, given that spatial ICA maximizes
the spatial independence between independent components,
patterns of spatial overlap between resting-state networks
may actually be more extensive than described here (see
Discussion: The role of whole-brain network convergence in
global brain communication, for further discussion address-
ing this topic).

NCMx =S(ICx) Eq: 1

The NCM was defined as the sum of independent compo-
nents at a given voxel (x) that were present above chance
after spatial ICA ( p < 0.001; FDR p = 0.01).

Relationship between network convergence
and global connectivity

In this analysis, we sought to examine whether network con-
vergence was related global brain connectivity (as calculated
using an independent graph-theoretical metric, see below). A
relationship between the NCM and global brain connectivity
would support the hypothesis that large-scale network conver-
gence facilitates efficient global brain communication. To ex-
plore this hypothesis we extracted a previously described
graph theoretic connectivity measure, the Intrinsic Connectiv-
ity Contrast (ICC) (Martuzzi et al., 2011), from every voxel in
the brain. Briefly, the ICC reflects the sum of the correlation of
each source voxel to every other voxel in the brain, which is
then weighted by the R2 value associated with the voxel-to-
voxel connection (Martuzzi et al., 2011). Note that the ICC
analysis was conducted on the same resting-state fMRI data-
set, however, before spatial smoothing (Martuzzi et al.,
2011). We then correlated the voxel-wise ICC score with
the NCM using Spearman’s rank-order correlation coefficient.

Convergence within individual resting-state networks

In addition to providing spatial descriptions of resting-
state network convergence across the entire brain (Figs. 2
and 3), we also estimated patterns of network convergence
within individual networks (Fig. 4). To achieve this, we cre-
ated 13 separate spatial convergence maps, in which each of

FIG. 1. Spatial independent
components. Group-level net-
work maps of 12 independent
components extracted using
spatial independent compo-
nent analysis. Each component
was labeled according to either
its known nomenclature (e.g.,
DMN) or to its most prominent
neuroanatomical feature (e.g.,
thalamus or temporal lobe).
Data shown for the Discovery
cohort when spatial compo-
nents were thresholded at
p < 0.001; FDR p = 0.01. Note
that, for ease of visualization
the Right Frontoparietal Net-
work is not shown here. DMN,
Default Mode Network; FDR,
false detection rate. Color
images available online at
www.liebertpub.com/brain
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the network masks identified in the original spatial ICA (see
Methods: Spatial ICA) were individually defined as a host
network mask (thresholded at p < 0.001, FDR p = 0.01).
The extent of network convergence at every voxel within
the host network was estimated by calculating the NCM
(as per Methods: Estimation of resting-state network conver-

gence) exclusively for voxels that were within the topogra-
phy of the host network mask, creating estimates of network
convergence within the topography of large-scale networks
of the brain.

To calculate the relative balance of each network toward
integrative or segregative processing, we calculated the
proportion of the total host network voxels that were signif-
icantly involved in network convergence (Network Conver-
gence Ratio [NCR]). Importantly, the spatial extent of
network component maps derived from spatial ICA is some-
what contingent on the particular statistical threshold applied
to the data, with more stringent thresholds associated with
less expansive spatial components and vice versa [see Sup-
plementary Results: Reproducibility over multiple statistical
thresholds and Calhoun et al. (2001)]. To circumvent this
potential issue, we calculated a threshold-adjusted Z-score
at each brain voxel (see Supplementary Methods: Repro-
ducibility over multiple statistical thresholds, for further
methodological detail), which accounted for variability in
voxel-wise network convergence patterns across a wide range
of component thresholds (thresholds ranging from p = 1 · 10�1

to 1 · 10�10).
The NCR was subsequently characterized for each compo-

nent by calculating the proportion of the total host voxels
that were significantly involved in network convergence,
controlling for variability across different component thresh-
olds (mean threshold-adjusted Z-score: Z > 1.65, p < 0.05).
The NCR for each host network was then plotted onto a
radar plot (Fig. 5), enabling a qualitative description of the
heterogeneity by which different individual networks dif-
ferentially balance the competing demands of specialized
processing against integration of information across net-
works. This analysis was also repeated with a more stringent
threshold-adjusted Z-score threshold (Z > 2.33, p < 0.01) to
ensure these results were robust to the significance threshold
applied.

FIG. 2. Topography of network con-
vergence across the cerebral cortex. Spa-
tial convergence map depicting the
number of maximally independent
resting-state networks that converge at
each cortical voxel (NCM). Color spec-
trum denotes the voxel-wise NCM: gray—
regions that were not covered by any of
the 13 large-scale networks; blue—voxels
associated with only one large-scale
network; yellow—voxels associated with
convergence of two networks; orange—
voxels associated with convergence of
three networks; red—voxels associated
with convergence of four networks;
white—voxels associated with conver-
gence of five or more networks. Data
shown for the Discovery cohort when
spatial components were thresholded at
p < 0.001, FDR p = 0.01. NCM, network
convergence metric. Color images avail-
able online at www.liebertpub.com/brain

FIG. 3. Topography of network convergence across the
basal ganglia and thalamus. Subcortical slice through the
basal ganglia and thalamus (x =� 4, y =�20) depicting
the number of maximally independent resting-state networks
that converge at each subcortical voxel (NCM). Color spec-
trum denotes the voxel-wise NCM; blue—voxels associated
within only one network; yellow—voxels associated with
convergence of two networks; red—voxels associated with
convergence between three or greater networks; gray—
regions that were not covered by any of the 13 large-scale
networks. Data shown for the Discovery cohort when spatial
components were thresholded at p < 0.001, FDR p = 0.01.
Color images available online at www.liebertpub.com/brain
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Of note, both the BGN and THAL components derived from
the group-level spatial ICA were also associated with a number
of cortical voxels (Fig. 1). Therefore, convergence patterns
within the BGN and THAL host networks may have been influ-
enced by the connectional properties of their respective cortical
associations. In this analysis, we were interested in describing
the integrative properties—not only within the broader THAL
and BGN networks in the context of their cortical associations
(Fig. 1) but also within the distinct anatomical boundaries of
these subcortical structures. Therefore, we also calculated the
NCR within anatomically defined gray matter masks exclu-
sively encompassing voxels within the basal ganglia (BGNanat)
and thalamus (THALanat), respectively (Fig. 5).

Validation analyses

Finally, we conducted an extensive series of validation an-
alyses to ensure the robustness of our methodology. The
methods for these validation analyses are described in detail
in the Supplementary Methods section. Specifically, we con-
ducted validation analyses to demonstrate that our estimates
of network convergence were (1) reproducible in an indepen-
dent Replication cohort (Supplementary Methods: Reprodu-
cibility of estimates of network convergence in an
independent Replication cohort); (2) robust to the methodol-
ogy used to define the topography of spatial networks (Sup-
plementary Methods: Reproducibility using seed-based
connectivity to define large-scale networks); (3) robust to
the number of independent components defined (Supplemen-
tary Methods: Reproducibility of whole-brain network con-

vergence with variable number of network components);
(4) robust to variable statistical thresholding (Supplementary
Methods: Reproducibility over multiple statistical thresh-
olds); and (5) reproducible at the individual subject level
(Supplementary Methods: Reproducibility of whole-brain
network convergence at the individual subject level).

Data visualization

For group-level interpretation, data were displayed on the
lateral and medial surfaces of a partially inflated surface map
using CARET software (Van Essen et al., 2001), allowing
the projection of a series of qualitative topographic descrip-
tions of network convergence in the brain. These spatial con-
vergence maps enable the graphical interrogation of the
voxel-wise NCM at a statistical threshold commonly reported
in the literature ( p < 0.001, FDR p = 0.01; Fig. 2). Note that,
for ease of visualization and data interpretation we opted to
parcellate the network convergence maps into three ‘‘levels’’
when displaying data for the subcortical convergence map
(Fig. 3) and within-network convergence maps (Fig. 4).
Importantly, parcellation into levels (Figs. 3 and 4) was purely
for the purposes of visualization, and all statistical analyses
were conducted on the unparcellated NCM (as displayed in
Fig. 1). The rationale for parcellating data into three levels
was based on the observation that, at a statistical threshold
of p < 0.001, FDR p = 0.01, approximately one-third of voxels
revealed convergence of one (36.8%), two (39.3%), or ‡three
(23.9%) networks respectively, enabling a clear and easily in-
terpretable schema for data visualization.

FIG. 4. Convergence within individual network components. Brain slices depicting the number of neuronal networks that
are shared at each voxel (NCM) within each of the individual large-scale networks of the brain. For each network component,
the color spectrum denotes the extent that a given voxel was shared with the other networks of the brain: blue—voxels that
participate only in the host network; yellow—voxels associated with convergence of two networks; red—voxels associated
with convergence between three or greater networks; gray—voxels that were outside of the network component mask. Data
shown for the Discovery cohort when spatial components were thresholded at p < 0.001, FDR p = 0.01. For clarity, PCU com-
ponent not shown. PCU, Precuneus component; NCM, Network Convergence Metric. Color images available online at
www.liebertpub.com/brain
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Results

Estimation of network convergence at the level
of the whole-brain

The 13 resting-state networks of interest covered 94.6% of
the total brain gray matter volume—encompassing almost
the entire brain, except for clusters within the orbitofron-
tal cortex, mid-cingulate, and lateral temporal cortex
(Fig. 2; statistical threshold; p < 0.001, FDR p = 0.01).
We observed marked heterogeneity in the propensity for
resting-state network convergence across the brain.
31.8% of voxels within the gray matter mask were associ-
ated with only one resting-state network (Figs. 2 and 3—
blue and Table 1), which predominantly occurred in the
bilateral primary motor cortex, bilateral primary visual
cortex, pons, putamen, anterior thalamus, lateral orbito-
frontal cortex, temporal poles, and lobule IV/V of the cer-
ebellum (Table 1). 30.1% of voxels were shared between
two resting-state networks (Figs. 2 and 3—yellow and

Table 1), including predominant regions within the middle
cingulate, cuneus, bilateral premotor areas, medial orbito-
frontal cortex, posterior claustrum, and lobule VI of the
cerebellar cortex. The remaining 38.1% of voxels sup-
ported the convergence of three or greater resting-state
networks. Regions supporting convergence across three
resting-state networks included midline frontal pole,
bilateral inferior frontal gyri, midbrain, and Crus I of the
cerebellum (Fig. 2—orange and Table 1). Regions demon-
strating convergence across four networks included the
pre-supplementary motor areas, posterior cingulate cortex,
medial prefrontal cortex, and superior parietal lobule,
along with the head of the caudate nucleus, anterior claus-
trum, posterior thalamus, and bilateral Crus II of the cere-
bellum (Fig. 2—red and Table 1). Finally, neural regions
supporting convergence across five networks included
the midline rostral anterior cingulate and precuneus, bilat-
eral posterior parietal cortex and the bilateral superior, and
middle frontal gyri (Fig. 2—white and Table 1).

FIG. 5. Heterogeneity of network convergence across individual large-scale networks. Radar plot revealing the NCR for
each individual large-scale network, calculated as the proportion of voxels in each individual network mask that were con-
sistently associated with high-order convergence across a range of statistical thresholds NCR = 1.0 is denoted by a dashed
blue line. Spatial maps represent binarized threshold-adjusted convergence maps within each of the individual large-scale
networks, revealing regions consistently involved in high-order network convergence across a range of statistical thresholds
(red) relative to all other brain voxels (blue). BGNanat, Basal Ganglia Nuclei (anatomical mask); BS, Brainstem component;
CBM, Cerebellar component; DAN, Dorsal Attention Network component; DMN, Default Mode Network component;
LFPN, Left Frontoparietal Network component; NCR, Network Convergence Ratio: RFPN, Right Frontopartietal Network
component; SM, Sensorimotor Network component; TEMP, Temporal Lobe component; THALanat, Thalamic nuclei (ana-
tomical mask); VAN, Ventral Attention Network component; VIS, Visual component. Color images available online at
www.liebertpub.com/brain
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Relationship between network convergence
and global connectivity

To examine whether network convergence was related to
an independent graph-theoretic measure of global brain con-
nectivity we correlated the NCM with ICC. We found a sig-
nificant positive correlation between the NCM and ICC
(rho = 0.543, p < 0.001), suggesting that the number of rest-
ing-state networks that converge on a given voxel was re-
lated to the global connectedness of the voxel within the
context of the whole-brain.

Convergence within individual networks

We have provided novel spatial maps describing the to-
pography of network convergence within each of the 13
components extracted from the spatial ICA (Fig. 4). We ob-
served substantial heterogeneity in the convergence patterns

within individual resting-state networks (Figs. 4 and 5). This
heterogeneity was further illustrated by plotting the NCR for
each individual resting-state network (Fig. 5). The NCR
radar plot (Fig. 5) demonstrates that associative networks,
along with the thalamus and basal ganglia are qualitatively
balanced toward integrative processing, whereas sensorimo-
tor, visual, brainstem, and temporal networks are balanced
toward segregated processing.

Validation analyses

In a series of validation analyses we have shown that our
estimates of network convergence are (1) reproducible in an
independent Replication cohort (Supplementary Results:
Reproducible estimates of network convergence in an inde-
pendent Replication cohort; Supplementary Fig. S1A); (2) ro-
bust to the methodology used to define the topography of
spatial networks (Supplementary Results: Reproducibility
using seed-based connectivity to define resting-state net-
works); (3) robust to the number of independent components
defined (Supplementary Results: Reproducibility of whole-
brain network convergence with variable number of network
components); (4) robust to variable statistical thresholding
(Supplementary Results: Reproducibility over multiple statis-
tical thresholds; Supplementary Fig. S1B); and (5) reproduc-
ible at the individual subject level (Supplementary Results:
Reproducibility of network convergence at the individual sub-
ject level).

Discussion

In this article, we developed a data-driven methodology
for describing the topography of resting-state network con-
vergence in the human brain (Figs. 2 and 3). In addition,
we have demonstrated a significant relationship between
whole-brain network convergence and global brain connec-
tivity at the level of the individual voxel, emphasizing the
importance of large-scale network convergence in support-
ing global communication in the human brain. Furthermore,
we examined the convergence of systems within each of the
individual large-scale networks of the brain (Figs. 4 and 5),
offering new perspectives regarding the topography by
which individual networks differentially balance the compet-
ing demands of specialized processing against the integration
of information. Importantly, we provided extensive valida-
tion of our methodology by demonstrating that our estimates
of network convergence were (1) reproducible in an indepen-
dent cohort (Supplementary Results: Reproducible estimates
of network convergence in an independent Replication
cohort; Supplementary Fig. S1); (2) robust to the methodol-
ogy used to define the topography of spatial networks (Sup-
plementary Results: Reproducibility using seed-based
connectivity to define resting-state networks); (3) robust to
the number of independent components defined (Supplemen-
tary Results: Reproducibility of whole-brain network con-
vergence with variable number of network components;
Supplementary Fig. S1B); (4) robust to variable statistical
thresholding (Supplementary Results: Reproducibility over
multiple statistical thresholds); and (5) reproducible at the
individual subject level (Supplementary Results: Reprodu-
cibility of network convergence at the individual subject
level).

Table 1. Large-Scale Network Convergence

Coordinates
Network
convergence Hemisphere Neural region x y z

‡ 5 Mid rACC 0 38 35
Mid PCu 0 �40 35
BL PPC – 47 �80 36
BL SFG – 22 15 45
BL MFG – 34 58 16

4 Mid pSMA 0 23 44
Mid PCC 0 �36 34
Mid mPFC 0 52 12
BL SPL – 44 �62 46
BL Crus II – 33 �75 �42
BL Caudate head – 7 16 0
BL Post thalamus – 8 �24 13
BL Ant claustrum – 36 9 0

3 Mid FP 0 59 �5
BL Midbrain – 7 �14 �8
BL Crus I – 34 �63 �33
BL IFG – 20 56 2

2 Mid MCC 0 22 30
Mid Cuneus 0 �82 30
Mid Medial OFC 0 23 �13
BL Med thalamus – 14 �18 1
BL PMA – 26 2 60
BL Lobule VI – 26 �76 �18
BL Post claustrum – 38 5 �10

1 BL Lateral OFC – 10 35 �16
BL M1 – 24 �29 62
BL V1 – 14 �94 9
BL Ant thalamus – 12 �3 0
BL Putamen – 22 �7 6
BL Pons – 2 �30 �34
BL TempP – 47 0 �34
BL Lobule IV/V – 9 �55 �18

Ant, anterior; BL, bilateral; Crus, cerebellar crus; FP, frontal pole;
IFG, inferior frontal gyrus; Lobule, cerebellar lobule; M1, primary
motor cortex; MCC, middle cingulatze gyrus; MFG, middle frontal
gyrus; Mid, midline; mPFC, medial prefrontal cortex; OFG, orbito-
frontal gyrus; PCC, posterior cingulate cortex; Post, posterior; PCu,
precuneus; PMA, premotor area; PPC, posterior parietal cortex;
pSMA, presupplementary motor area; rACC, rostral anterior cingu-
late cortex; SFG, superior frontal gyrus; SPL, superior parietal lob-
ule; TempP, temporal pole; V1, primary visual cortex.
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The role of whole-brain network convergence
in global brain communication

The results of our analyses revealed an ensemble of neural
regions involved in the convergence of multiple resting-state
networks, consisting of neural regions including the rostral an-
terior cingulate, precuneus, posterior cingulate cortex, poste-
rior parietal cortex, dorsal prefrontal cortex, superior parietal
lobule, along with the head of the caudate nucleus, anterior
claustrum, and posterior thalamus. The cortical regions impli-
cated in high-level network convergence in this study are
broadly consistent with findings from initial studies that have
begun to characterize regions that are likely to support inter-
modular communication in the brain. Together, converging
evidence from this (Figs. 2 and 3) and other work (Braga
et al., 2013; Power et al., 2013; van den Heuvel and Sporns,
2013; Yeo et al., 2011), suggests that a core backbone of cor-
tical hubs including the posterior cingulate/precuneus (Braga
et al., 2013; van den Heuvel and Sporns, 2013; Yeo et al.,
2013), anterior cingulate (Braga et al., 2013) along with poste-
rior parietal (van den Heuvel and Sporns, 2013; Yeo et al.,
2013) and prefrontal regions (Power et al., 2013; van den Heu-
vel and Sporns, 2013; Yeo et al., 2013), are important for the
integration of information across specialized brain networks.
Therefore, our findings provide complementary evidence—
utilizing a novel methodology—to support the functional im-
portance of a core backbone of neural regions in inter-network
integration in the brain (Sporns, 2013). Furthermore, in this
study we have characterized patterns of network convergence
in the human subcortex (Fig. 3), which have not been de-
scribed in previous work. Specifically, we demonstrate the in-
volvement of the caudate head, anterior claustrum, and
posterior thalamus (Fig. 3) in systems-level integration in
the brain.

Broadly, our findings suggest that at the macroscale, areas
of network convergence contain an amalgamation of neural
signals that can be decomposed into a series of overlapping
constituent network components using both multivariate
(Figs. 2 and 3) [also see Braga et al. (2013), Geranmayeh
et al. (2014), Yeo et al., (2013)] and univariate (see Supple-
mentary Results: Reproducibility using seed-based connec-
tivity to define resting-state networks) approaches. These
findings are consistent with the prediction that transmodal re-
gions will contain amalgamated neural signals that partially
correlate with signals arising from their input networks
(Mesulam, 1998). Despite these insights, local circuit mech-
anisms that coordinate the dynamic integration of incoming
neural signals remain unclear (Braga and Leech, 2015).

In this work we have also demonstrated a direct relation-
ship between network convergence and an independent
graph theoretical measure of global brain connectivity, fur-
ther emphasizing the importance of large-scale network con-
vergence in efficient global brain communication (van den
Heuvel and Sporns, 2013). A recent study comparing various
graph analytic metrics that describe aspects of network cen-
trality, revealed the non-redundancy of different centrality
measures in resting-state brain networks (Zuo et al., 2012).
Therefore, although we demonstrate a significant positive
correlation between network convergence and global brain
connectivity as defined by ICC [a weighted measure of degree
centrality at the level of the individual voxel Martuzzi et al.
(2011)], it is likely that these metrics are measuring subtly

different, although inter-related, properties of the brain
graph. For example, the graph-analytic literature has identi-
fied two broad categories of brain hubs: ‘‘connector’’ and
‘‘provincial’’ hubs (Sporns et al., 2007). Connector hubs are
high-degree nodes with connectivity profiles that expedite
communication across different network communities,
whereas provincial hubs are high-degree nodes with dense
connections to other nodes within their own community.
Degree-based methods are unable to effectively distinguish
between provincial and connector nodes (Sporns et al.,
2007), which may explain one way in which the inter-related
measures of network convergence and ICC differ. Although
not the focus on this study, future work will help to further
clarify the precise inter-relationships between various graph
analytic measures of centrality and network convergence.

Insights into the extent of network convergence in the brain

The methodological use of spatial ICA to define large-scale
resting-state networks in this study provides insights into the
extent and heterogeneity of resting-state network convergence
in the brain. Importantly, despite the definition of network
components using spatial ICA, which is designed to maximize
spatial independence between individual network components
(Calhoun et al., 2001), we still found substantial network con-
vergence across both the cortex and subcortex across a range of
statistical thresholds used to define the network components
(Supplementary Results: Reproducibility over multiple statis-
tical thresholds). Such extensive spatial overlap across net-
work components, despite the use of a method designed to
maximize spatial independence, has implications for the in-
terpretation of neuroimaging data and the way in which
brain parcellation is conceptualized. In particular, these find-
ings emphasize the importance of recognizing the limitations
of many existing parcellation strategies that unrealistically
assume that any given neural region cannot simultaneously
belong to two or more different modules [see Papo et al.
(2014) for further discussion].

Heterogeneity of convergence within individual
large-scale networks

In addition to whole-brain descriptions of network conver-
gence, we also characterize the spatial patterns of network
convergence within individual large-scale networks (Figs. 4
and 5), which to our knowledge, have not been previously
described. We utilized estimates of network convergence
to show that, although each large-scale network demon-
strates the dual organizational properties of integration and
segregation, there is marked heterogeneity in the way in
which individual networks balance these competing organi-
zational properties (Figs. 4 and 5). Specifically, we have
shown that putative association networks, including the
DMN, bilateral FPNs, DAN, and VAN, along with the
basal ganglia and thalamus are differentially balanced to-
ward integrative information processing (Fig. 5). In stark
contrast, unimodal networks including the visual and senso-
rimotor networks, along with the temporal and brainstem
networks are balanced toward segregative processing
(Fig. 5). These results are aligned with the notion that asso-
ciation networks participate in long-distance (Sepulcre et al.,
2010), flexible (Cole et al., 2013), dynamic (Zalesky et al.,
2014), and globally connected (Buckner et al., 2009; Cole
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et al., 2010; van den Heuvel and Sporns, 2013) information
processing in the brain, and suggest that association networks
may play a central role in facilitating the integration of infor-
mation across distributed cortical regions (Yeo et al., 2013).

Furthermore, our data provide novel evidence to suggest
that subcortical structures such as the basal ganglia and the
thalamus also support integration across large-scale net-
works of the brain (Figs. 3–5). Although these subcortical
structures have classically been viewed as mere relay sta-
tions for parallel processing within functionally segregated
cortical-subcortical loops (Alexander et al., 1986), an emerg-
ing body of neuroanatomical data has identified pathways for
communication across functional subdivisions of the basal
ganglia (Averbeck et al., 2014; Haber, 2008) and the thala-
mus (Draganski et al., 2008), suggesting that the subcortex
may provide an important and relatively unexplored nexus
for the integration of neural signals across modular neural
systems. Future work exploring the integrative capacities
of the often-neglected subcortical nuclei (Parvizi, 2009)
presents an exciting avenue for future discovery.

In this study we examined the topography of time-averaged
resting-state networks. However, emerging work has begun to
suggest that functional connectivity may be variable over time
(Hutchison et al., 2013). Although there are a number of tech-
nical challenges facing the study of time-resolved connectivity
analyses (Zalesky and Breakspear, 2015), future work examin-
ing how functional networks transiently coalesce at finer
temporal scales will further clarify how information is dynam-
ically integrated across large-scale neural systems.

Conclusion

Characterizing neuronal network convergence at the macro-
scale is fundamental in understanding global brain function. In
this study, we estimate the topography of resting-state network
convergence across the whole brain and within individual net-
works, offering new insights into the complex functional archi-
tecture of the human brain. Our results shed new light on how
information might propagate throughout cortical and subcorti-
cal brain networks.
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